Page 121 - 《中国药房》2025年11期
P. 121

·智慧药学·


          丙戊酸血药浓度预测的小样本多分类机器学习模型对比
                                                                                                Δ

                                                                    1
                                           3
                                                    2
                                  1 #
                                                                                    1
                                                                            1
                          2
                 1*
          陈 曦 ,袁申奥 ,袁海玲 ,赵 杰 ,陈 鹏 ,田春艳 ,苏 怡 ,张云松 ,张 玉(1.西安国际医学中心医院
                                                            1
          药学部,西安 710100;2.长安大学信息工程学院,西安 710064;3.长安大学经济与管理学院,西安 710064)
          中图分类号  R969.3;TP181      文献标志码  A      文章编号  1001-0408(2025)11-1399-06
          DOI  10.6039/j.issn.1001-0408.2025.11.20
          摘  要  目的  构建用于预测丙戊酸(VPA)血药浓度的三分类(不足、正常、超限)和二分类(不足、正常)模型,并比较这2种模型
          的性能,为临床制定用药方案提供参考。方法  收集2022年11月-2024年9月在西安国际医学中心医院接受VPA治疗并进行血
          药浓度检测的480名患者的临床数据(共695份数据)。分别针对三分类和二分类模型的目标变量构建预测模型,利用XGBoost特
          征重要性评分进行特征排名和选取,采用12种机器学习算法进行训练和验证,并通过准确率、F1分数及受试者工作特征曲线下面
          积(AUC)3个指标对模型的性能进行评价。结果  在三分类模型中,合并肾病和合并电解质紊乱的XGBoost特征重要性评分排名
          较高;然而在二分类模型中,这些特征的重要性排名显著降低,提示其与VPA血药浓度超限之间存在紧密的关联。在三分类模型
          中,随机森林法表现最佳,但其测试集F1分数仅达到0.704 0,AUC仅为0.519 3;而在二分类模型中,CatBoost方法表现最佳,其测
          试集F1分数为0.785 7,AUC达到了0.819 5。结论  本研究构建的三分类模型具有预测VPA血药浓度超限的能力,但预测及模型
          泛化能力较差;构建的二分类模型仅能对血药浓度不足和正常情况进行分类预测,但模型预测性能较强。
          关键词  丙戊酸;机器学习;血药浓度预测;小样本数据集;模型对比

          Comparison  of  small-sample  multi-class  machine  learning  models  for  plasma  concentration  prediction  of
          valproic acid
          CHEN Xi ,YUAN Shen’ao ,YUAN Hailing ,ZHAO Jie ,CHEN Peng ,TIAN Chunyan ,SU Yi ,ZHANG
                                                                                           1
                                                                            2
                                                                                                   1
                  1
                                   2
                                                              3
                                                   1
          Yunsong ,ZHANG Yu(1.  Dept.  of  Pharmacy,  Xi’an  International  Medical  Center  Hospital,  Xi’an  710100,
                             1
                 1
          China;2.  School  of  Information  Engineering,  Chang’an  University,  Xi’an  710064,  China;3.  School  of
          Economics and Management, Chang’an University, Xi’an 710064, China)
          ABSTRACT   OBJECTIVE  To  construct  three-class (insufficient,  normal,  excessive)  and  two-class (insufficient,  normal)
          models  for  predicting  plasma  concentration  of  valproic  acid (VPA),  and  compare  the  performance  of  these  two  models,  with  the
          aim  of  providing  a  reference  for  formulating  clinical  medication  strategies.  METHODS  The  clinical  data  of  480  patients  who
          received  VPA  treatment  and  underwent  blood  concentration  test  at  the  Xi’an  International  Medical  Center  Hospital  were  collected
          from November 2022 to September 2024 (a total of 695 sets of data). In this study, predictive models were constructed for target
          variables of three-class and two-class models. Feature ranking and selection were carried out using XGBoost scores. Twelve different
          machine  learning  algorithms  were  used  for  training  and  validation,  and  the  performance  of  the  models  was  evaluated  using  three
          indexes:  accuracy,  F1  score,  and  the  area  under  the  working  characteristic  curve  of  the  subject (AUC).  RESULTS  XGBoost
          feature importance scores revealed that in the three-class model, the importance ranking of kidney disease and electrolyte disorders
          was  higher.  However,  in  the  two-class  model,  the  importance  ranking  of  these  features  significantly  decreased,  suggesting  a  close
          association  with  the  excessive  blood  concentration  of VPA.  In  the  three-class  model,  Random  Forest  method  performed  best,  with
          F1 score of 0.704 0 and AUC of 0.519 3 on the test set; while in the two-class model, CatBoost method performed optimally, with
          F1  score  of  0.785  7  and  AUC  of  0.819  5  on  the  test  set.  CONCLUSIONS  The  constructed  three-class  model  has  the  ability  to
          predict excessive VPA blood concentration, but its prediction and model generalization abilities are poor; the constructed two-class
                                                             model  can  only  perform  classification  prediction  for
             Δ 基金项目 陕西省自然科学基础研究计划(No.2022JQ-657);西           insufficient  and  normal  blood  concentration  cases,  but  its
          安国际医学中心医院院级课题青年项目(No.2024QN11)                     model performance is stronger.
             *第一作者 主管药师,硕士。研究方向:精准药学服务。E-mail:               KEYWORDS     valproic  acid;  machine  learning;  plasma
          cxi9@foxmail.com
             # 通信作者 主任药师,硕士。研究方向:精准药学服务与药事管                  concentration   prediction;   small-sample   dataset;   model
          理。E-mail:aliceyuanhailing@163.com                  comparison


          中国药房  2025年第36卷第11期                                              China Pharmacy  2025 Vol. 36  No. 11    · 1399 ·
   116   117   118   119   120   121   122   123   124   125   126