Page 131 - 《中国药房》2025年8期
P. 131

娠妇女以及肝损伤患者的PBPK研究极度匮乏。这可能                          [ 6 ]  TSAMANDOURAS  N, ROSTAMI-HODJEGAN  A,
          是因为特殊人群生理结构复杂,生理参数数据相对较少                                AARONS L. Combining the ‘bottom up’ and ‘top down’
          且难获取,模型建立需从健康人群外推至目标特殊人                                 approaches  in  pharmacokinetic  modelling:fitting  PBPK
          群,建模难度较大。(2)模型研究主要集中在第一、二代                              models to observed clinical data[J]. Br J Clin Pharmacol,
                                                                  2015,79(1):48-55.
          药物,而对目前热门的第三代药物,仅奥希替尼建立了
                                                             [ 7 ]  王乐,夏彬彬,陈世财. 生理药代动力学模型在临床合理
          相应的模型,正在研究中的第四代药物尚未开展 PBPK
                                                                  用药中的应用[J]. 中国临床药理学杂志,2023,39(1):
          模型研究,这可能与第三、四代药物公开数据有限、缺乏
                                                                  127-130.
          可验证的PK数据有关。
                                                             [ 8 ]  郑亮,曾金,刘鑫,等. 药动学研究常用软件介绍[J]. 中国
              抗肿瘤药物的特殊人群临床试验由于伦理限制、受
                                                                  医院药学杂志,2020,40(23):2484-2489.
          试者招募难度大且健康状况复杂,进展困难且缓慢。当
                                                             [ 9 ]  BÄCKMAN P,ARORA S,COUET W,et al. Advances in
          前主流的建模软件可基于健康人群修改某些特定生理                                 experimental and mechanistic computational models to un‐
          参数如组织血流量、肝脏体积、肾小球滤过率等,形成虚                               derstand  pulmonary  exposure  to  inhaled  drugs[J].  Eur  J
          拟目标特殊人群,甚至已内置整套特殊人群的生理参                                 Pharm Sci,2018,113:41-52.
          数,例如GastroPlus内置了儿童、肝肾损伤人群,PK-Sim                  [10]  CHEN J,LIU D Y,ZHENG X,et al. Relative contribu‐
          内置了不同程度的肾损伤人群,Simcyp 内置了肿瘤人                             tions  of  the  major  human  CYP450  to  the  metabolism  of
          群,这为预测特殊人群的 PK 过程并进行剂量推荐节约                              icotinib and its implication in prediction of drug-drug in‐
          了大量时间和成本。PBPK模型还可推荐正在研究中的                               teraction  between  icotinib  and  CYP3A4  inhibitors/indu-
          第四代药物的人体首次试验剂量,推动新药研发进展。                                cers using physiologically based pharmacokinetic modeling
          但PBPK模型亦存在一些局限性:首先,模型预测的准确                              [J].  Expert  Opin  Drug  Metab  Toxicol,2015,11(6):
          性与参数的完整度和准确度密切相关,然而对于特殊人                                857-868.
                                                             [11]  ZHOU L,HE J,XIONG W,et al. Phase Ⅰ trial of ico‐
          群患者,某些生理和病理参数难以准确获取。其次,建
                                                                  tinib  combined  with  whole-brain  radiation  therapy  for
          模软件内置的参数大多为群体均值,如果个体间变异性
                                                                  EGFR-mutated  non-small  cell  lung  cancer  patients  with
          较大,可能会导致模型对个体PK过程预测不准确。
                                                                  brain metastases[J]. Int J Radiat Oncol,2014,90(5):S38-
              综上所述,尽管 PBPK 模型在 EGFR-TKI 的应用中
                                                                  S39.
          有不足,但总体来说应用广泛且进展较快,期待未来有
                                                             [12]  PILLA REDDY V,WALKER M,SHARMA P,et al. De‐
          更多可用的PBPK模型用于指导EGFR-TKI的新药研发                            velopment,verification,and  prediction  of  osimertinib
          并促进 EGFR-TKI 在临床中的合理用药,实现 EGFR-                         drug-drug interactions using PBPK modeling approach to
          TKI的精准用药。                                               inform drug label[J]. CPT Pharmacometrics Syst Pharma‐
          参考文献                                                    col,2018,7(5):321-330.
          [ 1 ]  FAVORITO V,RICCIOTTI I,DE GIGLIO A,et al. Non-  [13]  LIANG F,ZHANG Y M,XUE Q,et al. Integrated PBPK-
              small  cell  lung  cancer:an  update  on  emerging  EGFR-  EO modeling of osimertinib to predict plasma concentra‐
              targeted therapies[J]. Expert Opin Emerg Drugs,2024,29  tions and intracranial EGFR engagement in patients with
              (2):139-154.                                        brain metastases[J]. Sci Rep,2024,14:12736.
          [ 2 ]  JOHNSON M,GARASSINO M C,MOK T,et al. Treat‐  [14]  MOLTÓ J,RAJOLI R,BACK D,et al. Use of a physio-
              ment  strategies  and  outcomes  for  patients  with  EGFR-  logically  based  pharmacokinetic  model  to  simulate  drug-
              mutant non-small cell lung cancer resistant to EGFR tyro‐  drug interactions between antineoplastic and antiretroviral
              sine  kinase  inhibitors:focus  on  novel  therapies[J].  Lung   drugs[J]. J Antimicrob Chemother,2017,72(3):805-811.
              Cancer,2022,170:41-51.                         [15]  HRGOVCIC A  S,GRUBER A,DITTRICH  C,et  al.  P-
          [ 3 ]  KRSTEVSKA A,ĐURIŠ J,IBRIĆ S,et al. In-depth analy‐  168  Multiple  dose  pharmacokinetics  of  erlotinib  when
              sis of physiologically based pharmacokinetic(PBPK)mo-  combined with gastric acid reducing agents:a comparison
              deling utilization in different application fields using text   with  a  physiologically  based  pharmacokinetic  model[J].
              mining tools[J]. Pharmaceutics,2022,15(1):107.      Ann Oncol,2018,29:v47.
          [ 4 ]  ZHUANG X M,LU C. PBPK modeling and simulation in   [16]  DONG  Z  Q,LI  J,WU  F,et  al.  Application  of
              drug  research  and  development[J].  Acta  Pharm  Sin  B,  physiologically-based  pharmacokinetic  modeling  to  pre‐
              2016,6(5):430-440.                                  dict gastric pH-dependent drug-drug interactions for weak
          [ 5 ]  孙琦,李晓冰,何晓静,等. 生理药动学模型的研究与应                       base  drugs[J].  CPT  Pharmacometrics  Syst  Pharmacol,
              用进展[J]. 药物流行病学杂志,2020,29(4):280-284.                2020,9(8):456-465.


          中国药房  2025年第36卷第8期                                                China Pharmacy  2025 Vol. 36  No. 8    · 1017 ·
   126   127   128   129   130   131   132   133   134   135   136