Page 131 - 《中国药房》2025年8期
P. 131
娠妇女以及肝损伤患者的PBPK研究极度匮乏。这可能 [ 6 ] TSAMANDOURAS N, ROSTAMI-HODJEGAN A,
是因为特殊人群生理结构复杂,生理参数数据相对较少 AARONS L. Combining the ‘bottom up’ and ‘top down’
且难获取,模型建立需从健康人群外推至目标特殊人 approaches in pharmacokinetic modelling:fitting PBPK
群,建模难度较大。(2)模型研究主要集中在第一、二代 models to observed clinical data[J]. Br J Clin Pharmacol,
2015,79(1):48-55.
药物,而对目前热门的第三代药物,仅奥希替尼建立了
[ 7 ] 王乐,夏彬彬,陈世财. 生理药代动力学模型在临床合理
相应的模型,正在研究中的第四代药物尚未开展 PBPK
用药中的应用[J]. 中国临床药理学杂志,2023,39(1):
模型研究,这可能与第三、四代药物公开数据有限、缺乏
127-130.
可验证的PK数据有关。
[ 8 ] 郑亮,曾金,刘鑫,等. 药动学研究常用软件介绍[J]. 中国
抗肿瘤药物的特殊人群临床试验由于伦理限制、受
医院药学杂志,2020,40(23):2484-2489.
试者招募难度大且健康状况复杂,进展困难且缓慢。当
[ 9 ] BÄCKMAN P,ARORA S,COUET W,et al. Advances in
前主流的建模软件可基于健康人群修改某些特定生理 experimental and mechanistic computational models to un‐
参数如组织血流量、肝脏体积、肾小球滤过率等,形成虚 derstand pulmonary exposure to inhaled drugs[J]. Eur J
拟目标特殊人群,甚至已内置整套特殊人群的生理参 Pharm Sci,2018,113:41-52.
数,例如GastroPlus内置了儿童、肝肾损伤人群,PK-Sim [10] CHEN J,LIU D Y,ZHENG X,et al. Relative contribu‐
内置了不同程度的肾损伤人群,Simcyp 内置了肿瘤人 tions of the major human CYP450 to the metabolism of
群,这为预测特殊人群的 PK 过程并进行剂量推荐节约 icotinib and its implication in prediction of drug-drug in‐
了大量时间和成本。PBPK模型还可推荐正在研究中的 teraction between icotinib and CYP3A4 inhibitors/indu-
第四代药物的人体首次试验剂量,推动新药研发进展。 cers using physiologically based pharmacokinetic modeling
但PBPK模型亦存在一些局限性:首先,模型预测的准确 [J]. Expert Opin Drug Metab Toxicol,2015,11(6):
性与参数的完整度和准确度密切相关,然而对于特殊人 857-868.
[11] ZHOU L,HE J,XIONG W,et al. Phase Ⅰ trial of ico‐
群患者,某些生理和病理参数难以准确获取。其次,建
tinib combined with whole-brain radiation therapy for
模软件内置的参数大多为群体均值,如果个体间变异性
EGFR-mutated non-small cell lung cancer patients with
较大,可能会导致模型对个体PK过程预测不准确。
brain metastases[J]. Int J Radiat Oncol,2014,90(5):S38-
综上所述,尽管 PBPK 模型在 EGFR-TKI 的应用中
S39.
有不足,但总体来说应用广泛且进展较快,期待未来有
[12] PILLA REDDY V,WALKER M,SHARMA P,et al. De‐
更多可用的PBPK模型用于指导EGFR-TKI的新药研发 velopment,verification,and prediction of osimertinib
并促进 EGFR-TKI 在临床中的合理用药,实现 EGFR- drug-drug interactions using PBPK modeling approach to
TKI的精准用药。 inform drug label[J]. CPT Pharmacometrics Syst Pharma‐
参考文献 col,2018,7(5):321-330.
[ 1 ] FAVORITO V,RICCIOTTI I,DE GIGLIO A,et al. Non- [13] LIANG F,ZHANG Y M,XUE Q,et al. Integrated PBPK-
small cell lung cancer:an update on emerging EGFR- EO modeling of osimertinib to predict plasma concentra‐
targeted therapies[J]. Expert Opin Emerg Drugs,2024,29 tions and intracranial EGFR engagement in patients with
(2):139-154. brain metastases[J]. Sci Rep,2024,14:12736.
[ 2 ] JOHNSON M,GARASSINO M C,MOK T,et al. Treat‐ [14] MOLTÓ J,RAJOLI R,BACK D,et al. Use of a physio-
ment strategies and outcomes for patients with EGFR- logically based pharmacokinetic model to simulate drug-
mutant non-small cell lung cancer resistant to EGFR tyro‐ drug interactions between antineoplastic and antiretroviral
sine kinase inhibitors:focus on novel therapies[J]. Lung drugs[J]. J Antimicrob Chemother,2017,72(3):805-811.
Cancer,2022,170:41-51. [15] HRGOVCIC A S,GRUBER A,DITTRICH C,et al. P-
[ 3 ] KRSTEVSKA A,ĐURIŠ J,IBRIĆ S,et al. In-depth analy‐ 168 Multiple dose pharmacokinetics of erlotinib when
sis of physiologically based pharmacokinetic(PBPK)mo- combined with gastric acid reducing agents:a comparison
deling utilization in different application fields using text with a physiologically based pharmacokinetic model[J].
mining tools[J]. Pharmaceutics,2022,15(1):107. Ann Oncol,2018,29:v47.
[ 4 ] ZHUANG X M,LU C. PBPK modeling and simulation in [16] DONG Z Q,LI J,WU F,et al. Application of
drug research and development[J]. Acta Pharm Sin B, physiologically-based pharmacokinetic modeling to pre‐
2016,6(5):430-440. dict gastric pH-dependent drug-drug interactions for weak
[ 5 ] 孙琦,李晓冰,何晓静,等. 生理药动学模型的研究与应 base drugs[J]. CPT Pharmacometrics Syst Pharmacol,
用进展[J]. 药物流行病学杂志,2020,29(4):280-284. 2020,9(8):456-465.
中国药房 2025年第36卷第8期 China Pharmacy 2025 Vol. 36 No. 8 · 1017 ·