Page 122 - 《中国药房》2025年6期
P. 122

·智慧药学·


          基于机器学习模型预测抑郁症患者度洛西汀的血药浓度
                                                                                                Δ

          谯 明    1, 2* ,靳 路 ,朱 毅 ,胡君萍 (1.新疆医科大学第一附属医院药学部,乌鲁木齐 830011;2.新疆药
                                              4 #
                            3
                                    1, 2
          物临床研究重点实验室,乌鲁木齐 830011;3.新疆医科大学第一附属医院心理医学中心,乌鲁木齐 830011;
          4.新疆医科大学药学院,乌鲁木齐 830017)


          中图分类号  R971+.4      文献标志码  A      文章编号  1001-0408(2025)06-0752-06
          DOI  10.6039/j.issn.1001-0408.2025.06.20

          摘   要  目的  为临床尤其是无治疗药物监测条件的新疆基层医疗机构的抑郁症患者提供度洛西汀用药参考。方法  回顾性收集
          2022年1月至2023年12月在新疆医科大学第一附属医院服用度洛西汀的281例抑郁症住院患者的病历资料,按7∶3比例划分为
          训练集(196例)和测试集(85例)。通过随机森林(RF)模型中的“递归特征消除”程序进行特征选择,采用支持向量机、RF、极端梯
          度提升(XGBoost)、人工神经网络 4 种机器学习算法构建度洛西汀血药浓度预测模型,并通过决定系数(R)、平均绝对误差
                                                                                               2
         (MAE)、均方根误差(RMSE)评估比较4种模型的预测性能。通过夏普利加性解释方法对筛选出的最优模型的特征进行解释,确
          定特征的重要性排序及其对度洛西汀血药浓度预测结果的影响大小与方向。结果  最终选择了29个特征变量,包括年龄、民族、
          体重指数(BMI)等。XGBoost的R(0.808)最高,MAE(7.644)、RMSE(10.808)最低。影响度洛西汀血药浓度预测的特征重要性排
                                    2
          序为:BMI>年龄>其余20个特征集合(包括肝、肾功能和生化指标)>用药日剂量>合并疾病>联合用药>民族>白细胞计数>
          血红蛋白>身高。结论  XGBoost模型预测度洛西汀血药浓度的预测性能最佳,BMI和年龄对度洛西汀血药浓度预测的影响较大。
          关键词  抑郁症;度洛西汀;血药浓度;机器学习;治疗药物监测;夏普利加性解释

          Prediction of duloxetine blood concentration in patients with depression based on machine learning
                                       1, 2
                                                    4
          QIAO Ming ,JIN Lu ,ZHU Yi ,HU Junping(1. Dept. of Pharmacy, the First Affiliated Hospital of Xinjiang
                              3
                     1, 2
          Medical  University,  Urumqi  830011,  China;2.  Xinjiang  Key  Laboratory  of  Clinical  Drug  Research,  Urumqi
          830011,  China;3.  Psychological  Medicine  Center,  the  First Affiliated  Hospital  of  Xinjiang  Medical  University,
          Urumqi 830011, China;4. College of Pharmacy, Xinjiang Medical University, Urumqi 830017, China)
          ABSTRACT    OBJECTIVE  To  provide  medication  reference  for  duloxetine  use  in  clinical  settings,  particularly  for  patients  with
          depression  in  primary  medical  institutions  in  Xinjiang  that  lack  therapeutic  drug  monitoring  conditions.  METHODS  The  medical
          records  of  281  depression  inpatients  taking  duloxetine  in  the  First Affiliated  Hospital  of  Xinjiang  Medical  University  from  January
          2022  to  December  2023  were  retrospectively  collected. They  were  divided  into  training  set (196  cases)  and  test  set (85  cases)  in
          the  ratio  of  7∶3.  Feature  selection  was  performed  by  encapsulating  random  forests (RF)  with  recursive  feature  elimination.  Four
          machine  learning  algorithms,  namely  support  vector  machine,  RF,  extreme  gradient  boosting (XGBoost)  and  artificial  neural
          network,  were  used  to  construct  duloxetine  blood  concentration  prediction  model.  The  prediction  performance  of  the  models  was
          evaluated  and  compared  by  coefficient  of  determination (R),  mean  absolute  error (MAE)  and  root  mean  squared  error (RMSE).
                                                       2
          The feature of the selected optimal model was explained by Shapley additive explanation method, and the importance ranking of the
          features  and  the  influence  on  the  prediction  results  of  duloxetine  blood  concentration  were  determined.  RESULTS  A  total  of  29
          characteristic  variables  were  selected,  including  age,  ethnicity,  body  mass  index(BMI),  etc.  XGBoost  showed  the  highest  R
                                                                                                             2
         (0.808),  and  the  lowest  MAE (7.644)  and  RMSE (10.808).  The  ranking  of  feature  importance  for  predicting  the  blood
          concentration of duloxetine was as follows: BMI>age>other 20 feature sets (including liver and kidney function and biochemical
          indicators)>daily  dosage>comorbidities>combination  therapy>ethnicity>white  blood  cell  count>hemoglobin>height.
          CONCLUSIONS XGBoost model possesses the best prediction performance of duloxetine blood concentration; BMI and age have
                                                              a  greater  impact  on  the  prediction  of  duloxetine  blood
              Δ 基金项目 新疆维吾尔自治区自然科学基金项目(No. 2022-
                                                              concentration.
          D01C749)                                            KEYWORDS    depression;  duloxetine;  blood  concentration;
             *第一作者 副主任药师,博士。研究方向:临床药学。E-mail:
                                                              machine  learning;  therapeutic  drug  monitoring;  Shapley
          1532527694@qq.com
              # 通信作者 教授,博士。研究方向:药物研究与开发。E-mail:               additive explanation
          hjp_yft@163.com


          · 752 ·    China Pharmacy  2025 Vol. 36  No. 6                               中国药房  2025年第36卷第6期
   117   118   119   120   121   122   123   124   125   126   127