Page 43 - 《中国药房》2025年2期
P. 43
Mfn2介导的线粒体外膜融合和CL与OPA1相互作用介 WANG F Y,LI X W,TONG L. Analysis of factors affecting
导的线粒体内膜融合两个生物过程。除参与线粒体融 the survival rate of rat myocardial infarction model[J].
合以外,PA和CL在线粒体分裂过程中也发挥了相应的 Chin J Integr Med Cardio Cerebrovasc Dis,2008,6(7):
[16]
作用,这与PA和CL特殊的脂质体结构有关 。Drp1是 862-863.
[ 7 ] 黄继汉,黄晓晖,陈志扬,等. 药理试验中动物间和动物
一种可溶性蛋白,在线粒体分裂过程中,一部分Drp1能
与人体间的等效剂量换算[J]. 中国临床药理学与治疗
够特异性识别PA的酰基链,并优先与PA饱和酰基链结
学,2004,9(9):1069-1072.
合;另一部分Drp1能穿透线粒体的脂质双层膜,与PA和
HUANG J H,HUANG X H,CHEN Z Y,et al. Dose con‐
磷脂酰胆碱结合,这种特殊的脂质结合作用可抑制Drp1
version among different animals and healthy volunteers in
诱导的线粒体分裂 [17―18] 。本研究结果显示,与对照组比 pharmacological study[J]. Chin J Clin Pharmacol Ther,
较,模型组大鼠心肌组织中 PA、CL 含量和 Mfn1、Mfn2、 2004,9(9):1069-1072.
L-OPA1 蛋白的相对表达量均显著降低,S-OPA1、Drp1 [ 8 ] 卢健棋,唐梅玲,朱智德,等. 以中医思维认识心力衰竭
蛋白的相对表达量均显著升高,表明CHF大鼠心肌组织 [J]. 中医学报,2021,36(8):1600-1603.
线粒体内、外膜融合减少,而分裂增加。经强心汤干预 LU J Q,TANG M L,ZHU Z D,et al. Understanding heart
后,模型大鼠心肌组织中 PA、CL 含量和 Mfn1、Mfn2、L- failure from TCM thinking[J]. Acta Chin Med,2021,36
OPA1 蛋白的相对表达量均显著升高,S-OPA1、Drp1 蛋 (8):1600-1603.
[ 9 ] FAN H L,HE Z J,HUANG H F,et al. Mitochondrial
白的相对表达量均显著降低,进一步结合透射电镜和
quality control in cardiomyocytes:a critical role in the pro‐
ATP检测结果发现,强心汤可恢复心肌组织受损线粒体 gression of cardiovascular diseases[J]. Front Physiol,
结构和功能,增强心肌能量代谢。
2020,11:252.
综上所述,强心汤可调节CHF大鼠的心肌线粒体功 [10] ZHU F,ARSHI B,LEENING M J G,et al. Sex-specific
能和结构完整性,进而改善心肌能量代谢、减轻心肌纤 added value of cardiac biomarkers for 10-year cardio-
维化,其作用机制可能与激活 PA/Mfn/CL 信号通路有 vascular risk prediction[J]. Eur J Prev Cardiol,2022,29
关。尽管本研究已从作用途径、表型等方面尽可能充分 (11):1559-1567.
阐释强心汤的作用途径,然而仍存在一定的局限性,如 [11] KAMEOKA S,ADACHI Y,OKAMOTO K,et al. Phos‐
并未在体外实验中同步验证,且仅正向验证了该通路, phatidic acid and cardiolipin coordinate mitochondrial dy‐
未设置靶标敲低组,以进一步反向验证该机制,故有待 namics[J]. Trends Cell Biol,2018,28(1):67-76.
深入研究。 [12] NELSON R K,FROHMAN M A. Physiological and
参考文献 pathophysiological roles for phospholipase D[J]. J Lipid
Res,2015,56(12):2229-2237.
[ 1 ] BORLAUG B A,PAULUS W J. Heart failure with pre‐ [13] TILOKANI L,NAGASHIMA S,PAUPE V,et al. Mito‐
served ejection fraction:pathophysiology,diagnosis,and
chondrial dynamics:overview of molecular mechanisms
treatment[J]. Eur Heart J,2011,32(6):670-679.
[J]. Essays Biochem,2018,62(3):341-360.
[ 2 ] CHISTIAKOV D A,SHKURAT T P,MELNICHENKO A [14] MACVICAR T,LANGER T. OPA1 processing in cell
A,et al. The role of mitochondrial dysfunction in cardio‐
death and disease:the long and short of it[J]. J Cell Sci,
vascular disease:a brief review[J]. Ann Med,2018,50 2016,129(12):2297-2306.
(2):121-127.
[15] MATTIE S,RIEMER J,WIDEMAN J G,et al. A new mi‐
[ 3 ] SCHIRRMACHER V. Mitochondria at work:new insights tofusin topology places the redox-regulated C terminus in
into regulation and dysregulation of cellular energy supply
the mitochondrial intermembrane space[J]. J Cell Biol,
and metabolism[J]. Biomedicines,2020,8(11):526. 2018,217(2):507-515.
[ 4 ] ROY M,REDDY P H,IIJIMA M,et al. Mitochondrial di‐ [16] FROHMAN M A. Role of mitochondrial lipids in guiding
vision and fusion in metabolism[J]. Curr Opin Cell Biol, fission and fusion[J]. J Mol Med,2015,93(3):263-269.
2015,33:111-118. [17] FRANCY C A,ALVAREZ F J,ZHOU L,et al. The
[ 5 ] 毛美玲,卢健棋,谢丽钰,等. 基于网络药理学、分子对接 mechanoenzymatic core of dynamin-related protein 1
探讨强心汤治疗慢性心力衰竭的潜在作用机制[J]. 中医 comprises the minimal machinery required for membrane
杂志,2023,64(20):2132-2137. constriction[J]. J Biol Chem,2015,290(18):11692-11703.
MAO M L,LU J Q,XIE L Y,et al. Potential mechanism [18] STEPANYANTS N,MACDONALD P J,FRANCY C A,
of action of Qiangxin decoction for chronic heart failure et al. Cardiolipin’s propensity for phase transition and its
based on network pharmacology and molecular docking reorganization by dynamin-related protein 1 form a basis
[J]. J Tradit Chin Med,2023,64(20):2132-2137. for mitochondrial membrane fission[J]. Mol Biol Cell,
[ 6 ] 王飞燕,李学文,仝凌. 影响大鼠心肌梗死模型存活率的 2015,26(17):3104-3116.
因素分析[J]. 中西医结合心脑血管病杂志,2008,6(7): (收稿日期:2024-06-13 修回日期:2024-10-08)
862-863. (编辑:唐晓莲)
中国药房 2025年第36卷第2期 China Pharmacy 2025 Vol. 36 No. 2 · 165 ·