Page 81 - 《中国药房》2024年22期
P. 81
·药物与临床·
阿帕替尼致恶性肿瘤患者蛋白尿影响因素及风险预测模型研究
Δ
1*
1 #
2
1
黄 灿 ,王 栓 ,马 军 ,郭 琰 ,齐腊梅 (1.安庆市立医院药事管理科,安徽 安庆 246000;2.安庆市立
3
医院普外科,安徽 安庆 246000;3.安庆市立医院肿瘤内科,安徽 安庆 246000)
中图分类号 R969.3;R979.1 文献标志码 A 文章编号 1001-0408(2024)22-2779-05
DOI 10.6039/j.issn.1001-0408.2024.22.13
摘 要 目的 研究恶性肿瘤患者使用阿帕替尼治疗后发生蛋白尿的影响因素,据此构建并评价其风险预测模型。方法 选取我
院2020年1月-2022年12月使用阿帕替尼治疗的恶性肿瘤患者120例作为训练集,回顾性收集其临床资料,采用单因素分析和
多因素Logistic回归分析确定阿帕替尼致蛋白尿的独立危险因素,并构建风险预测模型;采用受试者操作特征(ROC)曲线对其预
测价值进行评价。选取2023年1-12月我院使用阿帕替尼治疗的恶性肿瘤患者34例作为验证集,利用其临床资料交叉验证预测
模型的准确性。结果 120例训练集患者的蛋白尿发生率为26.67%。蛋白尿组有吸烟史、合并高血压、阿帕替尼日剂量≥500 mg
的患者比例,以及丙氨酸转氨酶水平均显著高于非蛋白尿组,而中性粒细胞计数显著低于非蛋白尿组(P<0.05)。其中,有吸烟
史、合并高血压是阿帕替尼致蛋白尿的独立危险因素(比值比分别为 5.005、5.342,95% 置信区间分别为 1.806~13.872、1.227~
9.602,P<0.05)。阿帕替尼致蛋白尿发生概率(P)的二元Logistic回归模型方程为LogitP=1.610XMH+1.233XSH-1.483(MH为合并
高血压,SH为有吸烟史),模型准确度为80.0%。ROC曲线分析结果显示,曲线下面积为0.771,最大约登指数为0.474,此时LogitP
的最佳截断值为0.159 9,模型的敏感度为90.6%、特异性为56.8%。交叉验证结果显示,34例患者总体预测准确率为88.24%。结论
有吸烟史和合并高血压是阿帕替尼致蛋白尿的独立危险因素;所建风险预测模型具有中等预测价值,可用于预测阿帕替尼致恶性
肿瘤患者蛋白尿的发生风险。
关键词 阿帕替尼;恶性肿瘤;蛋白尿;危险因素;风险预测模型;Logistic回归;受试者操作特征曲线
Study on the influencing factors and risk prediction model for proteinuria in patients with malignant
tumors induced by apatinib
HUANG Can ,WANG Shuan ,MA jun ,GUO Yan ,QI Lamei(1. Dept. of Pharmaceutical Administration,
1
1
2
1
3
Anqing Municipal Hospital, Anhui Anqing 246000, China;2. Dept. of General Surgery, Anqing Municipal
Hospital, Anhui Anqing 246000, China;3. Dept. of Oncology, Anqing Municipal Hospital, Anhui Anqing
246000, China)
ABSTRACT OBJECTIVE To study the influencing factors for proteinuria in patients with malignant tumors treated with
apatinib, then establish and evaluate a risk prediction model based on it. METHODS A total of 120 patients with malignant tumors
treated with apatinib in our hospital from January 2020 to December 2022 were selected as the training set, and the clinical data
was collected. Univariate analysis and multivariate Logistic regression analysis were used to identify independent risk factors for
proteinuria associated with apatinib and then construct a risk prediction model. The predictive value of the model was evaluated by
using the receiver operator characteristic (ROC) curve. A total of 34 patients with malignant tumors treated with apatinib from
January to December 2023 in our hospital were selected as the validation set, and their clinical data were obtained to cross-validate
the accuracy of the prediction model. RESULTS The incidence of proteinuria in the training set of 120 patients was 26.67%. The
proportions of patients with smoking history, combined hypertension, apatinib daily dose of ≥500 mg, and alanine
aminotransferase level were significantly higher in proteinuria
Δ 基金项目 安徽省高校科研项目(No.2023AH050577);安庆市卫
生健康委科研课题(No.AQWJ2022002) group than those in non-proteinuria group. At the same time,
*第一作者 副主任药师,硕士。研究方向:临床药学。E-mail: the neutrophilic granulocyte count was significantly lower than
huangcan1987@163.com
that in non-proteinuria group (P<0.05). Patients with smoking
# 通信作者 主 任 药 师 。 研 究 方 向 :临 床 药 学 。 E-mail:
454914464@qq.com history and combined hypertension were the independent risk
中国药房 2024年第35卷第22期 China Pharmacy 2024 Vol. 35 No. 22 · 2779 ·