Page 20 - 《中国药房》2024年13期
P. 20
基于数据挖掘技术优化DRG临床用药目录 Δ
1*
3
2
1 #
恽琴素 ,周伟贤 ,徐 卉 ,刘 猛 ,陈 荣 (1.常州市第一人民医院药学部,江苏 常州 213003;2.常州市
1
第一人民医院医保办公室,江苏 常州 213003;3.常州市第一人民医院神经内科,江苏 常州 213003)
中图分类号 R95 文献标志码 A 文章编号 1001-0408(2024)13-1558-06
DOI 10.6039/j.issn.1001-0408.2024.13.03
摘 要 目的 优化疾病诊断相关分组(DRG)的临床用药目录,减少患者药品费用,提高DRG结付率。方法 选取某院神经内科
BR23疾病组作为研究对象,应用数据挖掘技术,探索疾病组的用药规律,并利用药品综合评价方法对重点监测药品进行评分,进
而优化疾病组的临床用药目录。选取2022年12月入组该疾病组患者的住院信息作为优化前数据,2023年9月入组该疾病组患者
的住院信息作为优化后数据,通过比较两组患者的医疗质量及药品费用数据来评价优化目录的实施效果。结果 优化临床用药目录
后,该疾病组的结付率由优化前的84.36%上升至104.70%,住院药品费用及住院总费用均显著降低(P<0.05),重点监测药品使用量
明显下降。结论 数据挖掘技术有助于探索疾病组临床用药规律;药师可以此为依据,通过有效药学干预手段提高DRG结付率。
关键词 疾病诊断相关分组;数据挖掘技术;临床用药目录;重点监测药品;药品综合评价
Optimization of the clinical drug list of DRG based on data mining technology
YUN Qinsu ,ZHOU Weixian ,XU Hui ,LIU Meng ,CHEN Rong(1. Dept. of Pharmacy, the First People’s
2
1
3
1
1
Hospital of Changzhou, Jiangsu Changzhou 213003, China;2. Office of Medical Insurance, the First People’s
Hospital of Changzhou, Jiangsu Changzhou 213003, China;3. Dept. of Neurology, the First People’s Hospital
of Changzhou, Jiangsu Changzhou 213003, China)
ABSTRACT OBJECTIVE To optimize the clinical drug list of diagnosis-related group (DRG), reduce the drug cost of patients,
and increase the DRG settlement rate. METHODS By selecting BR23 disease group in the department of neurology of a hospital as
the research object, data mining technology was used to explore the medication rule of the disease group, and the key monitored
drugs were scored by comprehensive evaluation of drugs, thus optimizing the clinical drug list of disease groups. The
hospitalization information of patients enrolled in the disease group in December 2022 was selected as the pre-optimization data,
and the hospitalization information of patients enrolled in the disease group in September 2023 was selected as the post-optimization
data. The implementation effect of the optimized list was evaluated by comparing the medical quality and drug cost data between
the two groups. RESULTS After optimizing the clinical drug list, the settlement rate of this disease group increased from 84.36%
before optimization to 104.70%; there was significant reduction in hospitalization drug cost and total hospitalization cost (P<
0.05); the consumption of key monitored drugs significantly decreased. CONCLUSIONS Data mining technology helps explore the
clinical medication rules of disease groups, which can be used by pharmacists to improve the settlement rate of DRG through
effective pharmaceutical intervention.
KEYWORDS diagnosis-related group; data mining technology; clinical drug list; key monitored drugs; drug comprehensive
evaluation
疾病诊断相关分组(diagnosis-related group,DRG) 国独创,是基于大数据的病种分值付费技术。在医院高
是根据诊断、手术操作等临床特征和患者性别、年龄等 质量发展和医保支付模式变革的大环境下,DRG/DIP支
人口统计学特征,将患者分入不同诊断组的病例组合方 付方式促进了医疗费用透明度的提升,也对临床用药管
[1]
法 ,以期实现更高效的医疗资源分配和费用管理。按 理提出了新要求,即强调药物治疗的安全性、有效性与
病种分值付费(diagnosis-intervention packet,DIP)为我 经济性,旨在提高医疗服务的质量和效率 。
[2]
Δ 基金项目 常 州 市 科 技 计 划 项 目(No. CJ20239009,No. 临床用药目录是指嵌入医院信息系统(hospital in‐
CM20223005) formation system,HIS)临床路径中,可供医生选择的药
*第一作者 主管中药师,硕士。研究方向:医院药学。电话:
品目录。目前的临床路径在指导药物选择时往往仅停
0519-68870941。E-mail:yunqinsu2@126.com
留在药理分类层面,缺乏对具体药品品种、剂量和疗程
# 通信作者 主任药师,硕士生导师,硕士。研究方向:定量药理、
药事管理。E-mail:pivascz@163.com 的明确指导,导致实际临床应用随意性较大,存在无指
· 1558 · China Pharmacy 2024 Vol. 35 No. 13 中国药房 2024年第35卷第13期