Page 20 - 《中国药房》2024年13期
P. 20

基于数据挖掘技术优化DRG临床用药目录                                               Δ



                 1*
                                           3
                                   2
                                                   1 #
          恽琴素 ,周伟贤 ,徐 卉 ,刘 猛 ,陈 荣 (1.常州市第一人民医院药学部,江苏 常州 213003;2.常州市
                           1
          第一人民医院医保办公室,江苏 常州 213003;3.常州市第一人民医院神经内科,江苏 常州 213003)
          中图分类号  R95      文献标志码  A      文章编号  1001-0408(2024)13-1558-06
          DOI  10.6039/j.issn.1001-0408.2024.13.03

          摘   要  目的  优化疾病诊断相关分组(DRG)的临床用药目录,减少患者药品费用,提高DRG结付率。方法  选取某院神经内科
          BR23疾病组作为研究对象,应用数据挖掘技术,探索疾病组的用药规律,并利用药品综合评价方法对重点监测药品进行评分,进
          而优化疾病组的临床用药目录。选取2022年12月入组该疾病组患者的住院信息作为优化前数据,2023年9月入组该疾病组患者
          的住院信息作为优化后数据,通过比较两组患者的医疗质量及药品费用数据来评价优化目录的实施效果。结果  优化临床用药目录
          后,该疾病组的结付率由优化前的84.36%上升至104.70%,住院药品费用及住院总费用均显著降低(P<0.05),重点监测药品使用量
          明显下降。结论  数据挖掘技术有助于探索疾病组临床用药规律;药师可以此为依据,通过有效药学干预手段提高DRG结付率。
          关键词  疾病诊断相关分组;数据挖掘技术;临床用药目录;重点监测药品;药品综合评价

          Optimization of the clinical drug list of DRG based on data mining technology
          YUN Qinsu ,ZHOU Weixian ,XU Hui ,LIU Meng ,CHEN Rong(1.  Dept.  of  Pharmacy,  the  First  People’s
                                             2
                                                                      1
                                                         3
                                    1
                     1
          Hospital  of  Changzhou,  Jiangsu  Changzhou  213003,  China;2.  Office  of  Medical  Insurance,  the  First  People’s
          Hospital  of  Changzhou,  Jiangsu  Changzhou  213003,  China;3.  Dept.  of  Neurology,  the  First  People’s  Hospital
          of Changzhou, Jiangsu Changzhou 213003, China)
          ABSTRACT    OBJECTIVE To optimize the clinical drug list of diagnosis-related group (DRG), reduce the drug cost of patients,
          and increase the DRG settlement rate. METHODS By selecting BR23 disease group in the department of neurology of a hospital as
          the  research  object,  data  mining  technology  was  used  to  explore  the  medication  rule  of  the  disease  group,  and  the  key  monitored
          drugs  were  scored  by  comprehensive  evaluation  of  drugs,  thus  optimizing  the  clinical  drug  list  of  disease  groups.  The
          hospitalization  information  of  patients  enrolled  in  the  disease  group  in  December  2022  was  selected  as  the  pre-optimization  data,
          and the hospitalization information of patients enrolled in the disease group in September 2023 was selected as the post-optimization
          data.  The  implementation  effect  of  the  optimized  list  was  evaluated  by  comparing  the  medical  quality  and  drug  cost  data  between
          the two groups. RESULTS  After optimizing the clinical drug list, the settlement rate of this disease group increased from 84.36%
          before  optimization  to  104.70%;  there  was  significant  reduction  in  hospitalization  drug  cost  and  total  hospitalization  cost (P<
          0.05); the consumption of key monitored drugs significantly decreased. CONCLUSIONS Data mining technology helps explore the
          clinical  medication  rules  of  disease  groups,  which  can  be  used  by  pharmacists  to  improve  the  settlement  rate  of  DRG  through
          effective pharmaceutical intervention.
          KEYWORDS     diagnosis-related  group;  data  mining  technology;  clinical  drug  list;  key  monitored  drugs;  drug  comprehensive
          evaluation



              疾病诊断相关分组(diagnosis-related group,DRG)           国独创,是基于大数据的病种分值付费技术。在医院高
          是根据诊断、手术操作等临床特征和患者性别、年龄等                            质量发展和医保支付模式变革的大环境下,DRG/DIP支
          人口统计学特征,将患者分入不同诊断组的病例组合方                            付方式促进了医疗费用透明度的提升,也对临床用药管
            [1]
          法 ,以期实现更高效的医疗资源分配和费用管理。按                            理提出了新要求,即强调药物治疗的安全性、有效性与
          病种分值付费(diagnosis-intervention packet,DIP)为我         经济性,旨在提高医疗服务的质量和效率 。
                                                                                                 [2]
              Δ  基金项目 常 州 市 科 技 计 划 项 目(No. CJ20239009,No.        临床用药目录是指嵌入医院信息系统(hospital in‐
          CM20223005)                                         formation system,HIS)临床路径中,可供医生选择的药
             *第一作者 主管中药师,硕士。研究方向:医院药学。电话:
                                                              品目录。目前的临床路径在指导药物选择时往往仅停
          0519-68870941。E-mail:yunqinsu2@126.com
                                                              留在药理分类层面,缺乏对具体药品品种、剂量和疗程
              # 通信作者 主任药师,硕士生导师,硕士。研究方向:定量药理、
          药事管理。E-mail:pivascz@163.com                         的明确指导,导致实际临床应用随意性较大,存在无指


          · 1558 ·    China Pharmacy  2024 Vol. 35  No. 13                            中国药房  2024年第35卷第13期
   15   16   17   18   19   20   21   22   23   24   25