Page 42 - 《中国药房》2024年8期
P. 42

5种β受体拮抗剂类药物中的N-亚硝基类杂质的含量研究
                                                                                                   Δ


          田 珩 ,杨仪雪,戴 聪,刘亚雄,严全鸿(广东省药品检验所/国家药品监督管理局药用辅料质量控制与评价
                *
          重点实验室,广州 510180)


          中图分类号  R917      文献标志码  A      文章编号  1001-0408(2024)08-0936-06
          DOI  10.6039/j.issn.1001-0408.2024.08.07

          摘   要  目的  测定普萘洛尔、美托洛尔、阿替洛尔、艾司洛尔、比索洛尔原料药/制剂中N-亚硝基类杂质含量,明确其含量的关注
          阈值。方法  采用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术。以ACE Excel 3 C18-AR为色谱柱,以含0.01 mol/L乙酸
          铵的0.2%甲酸溶液-甲醇为流动相进行梯度洗脱,流速为0.60 mL/min,柱温为40 ℃,进样量为5 μL;以可加热的电喷雾离子源为
          离子源,以全扫描-选择离子监测模式进行正离子扫描。采用该法对10家企业生产的15批β受体拮抗剂类药物原料药/制剂中N-
          亚硝基类杂质含量进行测定,并采用Discovery Studio软件对待测杂质进行毒性预测和关注阈值估算。结果  5种β受体拮抗剂类
          药物中,N-亚硝基普萘洛尔、N-亚硝基美托洛尔、N-亚硝基阿替洛尔、N-亚硝基艾司洛尔、N-亚硝基比索洛尔检测质量浓度的线性
          范围分别为 1.01~503.38、1.02~508.38、0.97~483.63、1.11~554.27、1.05~523.92 ng/mL(r>0.999),定量限分别为 1.04、0.25、
          0.05、0.55、1.05 ng/mL,检测限分别为 0.52、0.08、0.02、0.17、0.52 ng/mL,精密度、重复性、加样回收率、稳定性、耐用性试验的 RSD
          均小于7.5%(n=6或n=5)。15批样品中,除1批样品外,其余批次均检出了N-亚硝基普萘洛尔(1.07~8.91 ng/mg)、N-亚硝基美
          托洛尔(1.43~3.37 ng/mg)、N-亚硝基阿替洛尔(1.33 ng/mg)、N-亚硝基艾司洛尔(0.19 ng/mg)、N-亚硝基比索洛尔(1.27 ng/mg)。
          经预测,上述5种杂质有不同程度的生育毒性、致突变性、致癌性,关注阈值分别为1.0、0.4、4.3、0.2、46.7 ng/mg。结论  所建方法简
          单快捷、灵敏度高、专属性强,估算的关注阈值明确,可用于多种β受体拮抗剂类药物中N-亚硝基类杂质的含量控制。
          关键词  β受体拮抗剂类药物;N-亚硝基类杂质;超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术;基因毒性;关注阈值

          Content study of N-nitroso impurities in 5 types of β-blockers
          TIAN Heng,YANG Yixue,DAI Cong,LIU Yaxiong,YAN Quanhong(Guangdong  Institute  for  Drug  Control/
          NMPA  Key  Laboratory  for  Quality  Control  and  Evaluation  of  Pharmaceutical  Excipients,  Guangzhou  510180,
          China)

          ABSTRACT    OBJECTIVE  To  determine  the  contents  of  N-nitroso  impurities  in  raw  materials/formulations  of   propranolol,
          metoprolol,  atenolol,  esmolol  and  bisoprolol,  and  clarify  the  attention  threshold.  METHODS  Ultra-high  performance  liquid
          chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q/Orbitrap HRMS)was adopted. An
          ACE  Excel  3  C18-AR  column  was  used  for  the  separation  and  a  mixture  of  0.2%  formic  acid  solution  with  0.01  mol/L  ammonium
          acetate  and  methanol  was  employed  as  the  mobile  phase  by  gradient  elution,  at  a  flow  rate  of  0.60  mL/min.  The  column
          temperature  was  set  at  40  ℃ ,  and  the  sample  size  was  5  μL.  The  heated  electrospray  ionization  source  was  employed  in  the
          positive full mass spectra-selected ion monitoring mode. The contents of N-nitroso impurities in raw materials/formulations of 15 batches
          of β-blockers from 10 manufacturers were determined by this method. Discovery Studio software was applied to predict the toxicity
          of  the  impurities  and  estimate  the  attention  threshold.  RESULTS  Among  5  kinds  of  β -blockers,  the  linear  ranges  of  N-nitroso
          propranolol,  N-nitroso  metoprolol,  N-nitroso  atenolol,  N-nitroso  esmolol  and  N-nitroso  bisoprolol  were  1.01-503.38,  1.02-508.38,
          0.97-483.63, 1.11-554.27 and 1.05-523.92 ng/mL, respectively (r>0.999). The limits of quantitation were 1.04, 0.25, 0.05, 0.55
          and  1.05  ng/mL,  and  the  limits  of  detection  were  0.52,  0.08,  0.02,  0.17  and  0.52  ng/mL,  respectively.  RSDs  of  precision,
          reproducibility,  recovery,  stability  and  durability  tests  were  all  lower  than  7.5% (n=6  or  n=5).  Among  the  15  batches  of
          samples, except for 1 batch, N-nitroso propranolol (1.07-8.91 ng/mg), N-nitroso metoprolol (1.43-3.37 ng/mg), N-nitroso atenolol
         (1.33 ng/mg), N-nitroso esmolol (0.19 ng/mg) and N-nitroso bisoprolol (1.27 ng/mg) were detected in all other batches. According
          to predictions, the above 5 impurities had varying degrees of reproductive toxicity, mutagenicity and carcinogenicity, with attention
          thresholds of 1.0, 0.4, 4.3, 0.2 and 46.7 ng/mg, respectively. CONCLUSIONS The established method is simple, rapid, sensitive
          and  specific,  the  estimated  attention  thresholds  are  clear,  which  can  be  used  for  the  control  of  N-nitroso  impurities  in  various
                                                              β-blockers.
              Δ 基金项目 广东省医学科学技术研究基金项目(No.B2023406)
             *第一作者 主管药师,硕士。研究方向:药物分析、质量控制。电                   KEYWORDS    β-blockers;  N-nitroso  impurities;  UPLC-Q/Orbitrap
          话:020-32447921。E-mail:dongqingfish@126.com          HRMS; gene toxicity; attention thresholds


          · 936 ·    China Pharmacy  2024 Vol. 35  No. 8                               中国药房  2024年第35卷第8期
   37   38   39   40   41   42   43   44   45   46   47