Page 15 - 《中国药房》2025年13期
P. 15

Drug Saf,2024,47(2):117-123.                   [24]  ZHANG Y Y,DENG Z Q,XU X Y,et al. Application of
          [11]  TAI C T,SUE K L,HU Y-H. Machine learning in high-    artificial intelligence in drug-drug interactions prediction:
              alert medication treatment:a study on the cardiovascular   a review[J]. J Chem Inf Model,2024,64(7):2158-2173.
              drug[J]. Appl Sci,2020,10(17):5798.            [25]  WANG S Q,DU G X,DAI S F,et al. Efficient informa‐
          [12]  PATEL J,LADANI A,SAMBAMOORTHI N,et al. A ma‐      tion exchange approach for medical IoT based on AI and
              chine  learning  approach  to  identify  predictors  of  poten‐  DAG-enabled  blockchain[J].  Heliyon,2024,11(2):
              tially inappropriate non-steroidal anti-inflammatory drugs   e41617.
              (NSAIDs) use in older adults with osteoarthritis[J]. Int J   [26]  ARMSTRONG  D,PAUL  C,MCGLAUGHLIN  B,et  al.
              Environ Res Public Health,2020,18(1):155.           Can  artificial  intelligence (AI)  educate  your  patient?  A
          [13]  OBERMEYER Z,EMANUEL E J. Predicting the future:   study  to  assess  overall  readability  and  pharmacists’  per‐
              big  data,machine  learning,and  clinical  medicine[J].  N   ception  of AI ‐ generated  patient  education  materials[J].  J
              Engl J Med,2016,375(13):1216-1219.                  Am Coll Clin Pharm,2024,7(8):803.
          [14]  WONGYIKUL P,THONGYOT N,TANTRAKOOLCHAROEN     [27]  ROUHI A D,GHANEM Y K,YOLCHIEVA L,et al. Can
              P,et al. High alert drugs screening using gradient boosting   artificial  intelligence  improve  the  readability  of  patient
              classifier[J]. Sci Rep,2021,11(1):20132.            education  materials  on  aortic  stenosis?  A  pilot  study[J].
          [15]  LEVIVIEN C,CAVAGNA P,GRAH A,et al. Assessment     Cardiol Ther,2024,13(1):137-147.
              of  a  hybrid  decision  support  system  using  machine  lear-   [28]  闫盈盈,何娜,张志玲,等. 生成式人工智能构建患者药
              ning with artificial intelligence to safely rule out prescrip‐  品说明书的方法研究[J]. 临床药物治疗杂志,2024,22
              tions  from  medication  review  in  daily  practice[J].  Int  J   (5):1-6.
              Clin Pharm,2022,44(2):459-465.                 [29]  REIS Z S N,PAGANO A S,RAMOS DE OLIVEIRA I J,
          [16]  王天琳,蔡乐,董钊,等. 基于生成式人工智能大语言模                        et al. Evaluating large language model-supported instruc‐
              型编写缺血性卒中患者出院用药教育材料的案例研究                             tions for medication use:first steps toward a comprehen‐
              [J]. 临床药物治疗杂志,2025,23(1):71-76.                     sive model[J]. Mayo Clin Proc Digit Health,2024,2(4):
          [17]  LEITNER J,CHIANG P H,AGNIHOTRI P,et al. The ef‐   632-644.
              fect  of  an AI-based,autonomous,digital  health  interven‐  [30]  TOPOL E J. Machines and empathy in medicine[J]. Lan‐
              tion using precise lifestyle guidance on blood pressure in   cet,2023,402(10411):1411.
              adults  with  hypertension:single-arm  nonrandomized  trial  [31]  BATES D W,LEVINE D,SYROWATKA A,et al. The po‐
              [J]. JMIR Cardio,2024,8:e51916.                     tential of artificial intelligence to improve patient safety:a
          [18]  YANG X,CHEN A K,POURNEJATIAN N,et al. A large     scoping review[J]. NPJ Digit Med,2021,4(1):54.
              language model for electronic health records[J]. NPJ Digit   [32]  AGGARWAL  A,TAM  C  C,WU  D  Z,et  al.  Artificial
              Med,2022,5(1):194.                                  intelligence-based  chatbots  for  promoting  health  beha-
          [19]  BRACKEN A,REILLY C,FEELEY A,et al. Artificial in‐  vioral changes:systematic review[J]. J Med Internet Res,
              telligence (AI)-powered documentation systems in health‐  2023,25:e40789.
              care:a systematic review[J]. J Med Syst,2025,49(1):28.  [33]  罗旭飞,吕晗,宋再伟,等. 生成式人工智能对临床实践
          [20]  LIU Z L,WU Z H,HU M X,et al. PharmacyGPT:the arti‐  指南制订、评价和应用的影响[J]. 协和医学杂志,2024,
              ficial intelligence pharmacist and an exploration of AI for   15(5):1173-1181.
              ICU  pharmacotherapy  management[EB/OL]. (2023-07-  [34]  WANG  J  Z,WANG  K,YU  Y  F,et  al.  Self-improving
              19)[2025-03-26]. https://arxiv.org/html/2307.10432v3.  generative foundation model for synthetic medical image
          [21]  POWELEIT E A,VINKS A A,MIZUNO T. Artificial in‐   generation and clinical applications[J]. Nat Med,2025,31
              telligence  and  machine  learning  approaches  to  facilitate   (2):609-617.
              therapeutic  drug  management  and  model-informed  preci‐  [35]  蔡雨坤,陈禹尧. 取“人”之长:虚拟数字人在科普中的应
              sion dosing[J]. Ther Drug Monit,2023,45(2):143-150.  用研究[J]. 科普研究,2023,18(4):26-34,107.
          [22]  TANG B H,ZHANG J Y,ALLEGAERT K,et al. Use of   [36]  李明,熊晓敏,刘猛. 人工智能在药物不良反应管理中的
              machine  learning  for  dosage  individualization  of  vanco‐  应用研究进展[J]. 临床药物治疗杂志,2024,22(12):1-5.
              mycin in neonates[J]. Clin Pharmacokinet,2023,62(8):  [37]  NISHIOKA S,WATABE S,YANAGISAWA Y,et al. Ad‐
              1105-1116.                                          verse  event  signal  detection  using  patients’  concerns  in
          [23]  李丽敏,吴文宇,魏芬芳,等. 机器学习在药物警戒领域                        pharmaceutical  care  records:evaluation  of  deep  learning
              应用的文献计量分析[J]. 药物流行病学杂志,2024,33                      models[J]. J Med Internet Res,2024,26:e55794.
              (7):801-811.                                   [38]  GAO Z Y,YANG Y,MENG R G,et al. Automatic assess‐


          中国药房  2025年第36卷第13期                                              China Pharmacy  2025 Vol. 36  No. 13    · 1561 ·
   10   11   12   13   14   15   16   17   18   19   20