Page 131 - 《中国药房》2023年1期
P. 131

再次,机器学习对计算机知识背景要求较高,但目                              2019,40(12):1603-1610.
          前多数医务工作者对该领域了解不多,使得其应用受                            [13]  XUE L,ZHANG W W,DING X L,et al. Population phar‐
          限;而拥有计算机知识背景的人员可能对医学知识不太                                macokinetics and individualized dosage prediction of cy‐
          了解,导致其所建模型和预测结果让临床人员难以理                                 closporine in allogeneic hematopoietic stem cell transplant
          解。随着机器学习的快速发展,学科交叉的不断深入,                                patients[J]. Am J Med Sci,2014,348(6):448-454.
                                                             [14]  CANDELA-BOIX  M  R,RAMÓN-LÓPEZ  A,NALDA-
          今后可推荐医务工作者接受机器学习相关训练,从而能
                                                                  MOLINA R,et al. Population pharmacokinetics models of
          更好地分析、整合信息并在机器学习的辅助下作出更为
                                                                  sirolimus in renal transplant patients:a systematic review
          科学的临床决策。
                                                                  [J]. Farm Hosp,2021,45(7):77-83.
              总之,基于治疗药物监测的个体化治疗是临床合理
                                                             [15]  傅晓华,洪晓丹,刘石带,等 . 人工神经网络模型在肾移
          用药的重要环节,机器学习相比传统方法能够更精准地                                植患者他克莫司个体化给药中的应用[J]. 中国药学杂
          预测血药浓度和给药剂量,提高临床精准用药水平,减                                志,2013,48(12):1000-1004.
          少不良反应的发生。相信在未来的治疗药物监测和个                            [16]  洪晓丹,李碧虹,罗美娟,等 . 肝移植受者他克莫司血药
          体化用药实践中,机器学习将发挥更大的作用,实现个                                浓度早期预测方案及评估[J].中国医院药学杂志,2013,
          体化治疗决策的智能化。                                             33(5):381-385.
          参考文献                                               [17]  CHEN H Y,CHEN T C,MIN D I,et al. Prediction of ta‐
          [ 1 ]  DEO R C.Machine learning in medicine[J]. Circulation,  crolimus blood levels by using the neural network with ge‐
              2015,132(20):1920-1930.                             netic  algorithm  in  liver  transplantation  patients[J].  Ther
          [ 2 ]  KOLLURI S,LIN J,LIU R,et al. Machine learning and   Drug Monit,1999,21(1):50-56.
              artificial  intelligence  in  pharmaceutical  research  and  de‐  [18]  THISHYA K,VATTAM K K,NAUSHAD S M,et al. Arti‐
              velopment:a review[J]. AAPS J,2022,24(1):19.        ficial neural network model for predicting the bioavailabi-
          [ 3 ]  刘雨安,杨小文,李乐之.机器学习在疾病预测的应用研                        lity of tacrolimus in patients with renal transplantation[J].
              究进展[J].护理学报,2021,28(7):30-34.                       PLoS One,2018,13(4):e0191921.
          [ 4 ]  刘子暖,杨俊杰,陈韵岱.机器学习在冠状动脉计算机断                   [19]  CAI N,ZHANG X,ZHENG C,et al. A novel random fo-
              层扫描领域的应用及进展[J].解放军医学杂志,2021,46                      rest  integrative  approach  based  on  endogenous  CYP3A4
              (3):286-293.                                        phenotype  for  predicting  tacrolimus  concentrations  and
          [ 5 ]  张景奇,史文宝,纪秀娟.机器学习在医疗和公共卫生中                        dosages  in  Chinese  renal  transplant  patients[J].  J  Clin
              应用[J].中国公共卫生,2019,35(10):1449-1452.                 Pharm Ther,2020,45(2):318-323.
          [ 6 ]  VAMATHEVAN J,CLARK D,CZODROWSKI P,et al.    [20]  SEELING  W,PLISCHKE  M,DE  BRUIN  J  S,et  al.
              Applications  of  machine  learning  in  drug  discovery  and   Knowledge-based immunosuppressive therapy for kidney
              development[J].  Nat  Rev  Drug  Discov,2019,18(6):  transplant patients:from theoretical model to clinical inte‐
              463-477.                                            gration[J]. Stud Health Technol Inform,2015,216:1119.
          [ 7 ]  韦炳华,叶毅芳,罗美娟,等 . 肝移植患者他克莫司个体                 [21]  TANG  J,LIU  R,ZHANG  Y  L,et  al.  Application  of
              化给药研究[J].中国临床药理学与治疗学,2012,17(7):                    machine-learning models to predict tacrolimus stable dose
              791-796.                                            in renal transplant recipients[J]. Sci Rep,2017,7:42192.
          [ 8 ]  傅晓华,叶毅芳,罗美娟,等 . 人工神经网络预测肝移植                 [22]  WOILLARD J B,LABRIFFE M,DEBORD J,et al. Ta‐
              术受者他克莫司血药浓度[J]. 药学学报,2012,47(9):                    crolimus  exposure  prediction  using  machine  learning[J].
              1134-1140.                                          Clin Pharmacol Ther,2021,110(2):361-369.
          [ 9 ]  BADILLO S,BANFAI B,BIRZELE F,et al. An introduc‐  [23]  WOILLARD J B,LABRIFFE M,PRÉMAUD A,et al. Es‐
              tion to machine learning[J]. Clin Pharmacol Ther,2020,  timation of drug exposure by machine learning based on
              107(4):871-885.                                     simulations  from  published  pharmacokinetic  models:the
          [10]  KOZA J R,BENNETT F H,ANDRE D,et al. Automated     example  of  tacrolimus[J].  Pharmacol  Res,2021,167:
              design of both the topology and sizing of analog electrical   105578.
              circuits  using  genetic  programming[J].  Artif  Intell  Des,  [24]  余俊先,史丽敏,李珊,等 . 肾移植受者的环孢素剂量预
              1996:123-134.                                       测[J].中国医院药学杂志,2010,30(17):1451-1454.
          [11]  PUNCHOO R,BHOORA S,PILLAY N. Applications of   [25]  余俊先,史丽敏,王汝龙,等.基于人工神经网络的环孢素A
              machine learning in the chemical pathology laboratory[J].   个体化给药设计[J].中国药学杂志,2010,45(12):927-930.
              J Clin Pathol,2021,74(7):435-442.              [26]  余俊先,夏杰,史丽敏,等 . 人工神经网络建立的环孢素
          [12]  LI T F,HU L,MA X L,et al. Population pharmacokine-   A 血药浓度预测模型[J]. 中国药物应用与监测,2010,7
              tics of cyclosporine in Chinese children receiving hemato‐  (1):52-55.
              poietic  stem  cell  transplantation[J]. Acta  Pharmacol  Sin,                    (下转第128页)


          中国药房  2023年第34卷第1期                                                 China Pharmacy  2023 Vol. 34  No. 1    · 121 ·
   126   127   128   129   130   131   132   133   134   135   136