Page 112 - 《中国药房》2025年10期
P. 112
·循证药学·
成人住院患者用药风险预测模型的系统评价
Δ
1*
4 #
杨 洋 ,单雪峰 ,李海东 ,李垚铮 ,周琦雯 ,王红梅 (1.重庆医科大学附属第一医院健康管理中心,重庆
4
2
4
3
400016;2.重庆医科大学附属璧山医院药学部,重庆 402760;3.重庆医科大学附属口腔医院科技教育外事科,
重庆 401147;4.重庆医科大学附属第一医院药学部,重庆 400016)
中图分类号 R952 文献标志码 A 文章编号 1001-0408(2025)10-1254-06
DOI 10.6039/j.issn.1001-0408.2025.10.18
摘 要 目的 系统评价成人住院患者用药风险预测模型,为用药风险预测模型的开发和临床应用提供参考。方法 检索
PubMed、Embase、Web of Science、中国知网、万方数据、维普网、中国生物医学文献数据库,收集成人住院患者用药风险预测模型
的文献,检索时限为建库至2024年5月。筛选文献、提取资料、评价文献质量后,对纳入研究的结果进行描述性分析。结果 共纳
入13项研究,涉及12个模型。9项研究采用Logistic回归算法建模,模型纳入预测因子数为3~11个;受试者工作特征曲线下面积
为0.65~0.865。文献质量评价结果显示,10项研究为高偏倚风险,10项研究为高适用性风险。共得到31个预测因子,涉及患者
基础信息15个、检验指标3个、用药信息5个、其他8个。结论 现有成人住院患者用药风险预测模型以Logistic回归算法为主,预
测因子多聚焦于人口学等基础指标,模型总体预测性能有待提高,研究的整体偏倚风险较高。
关键词 住院患者;用药风险;药物相关问题;预测模型;预测因子
Systematic review on medication risk prediction models for hospitalized adult patients
YANG Yang ,SHAN Xuefeng ,LI Haidong ,LI Yaozheng ,ZHOU Qiwen ,WANG Hongmei(1. Dept. of Health
4
4
4
1
2
3
Management Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
2. Dept. of Pharmacy, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China;3. Dept.
of Science and Technology Education and Foreign Affairs, the Affiliated Stomatological Hospital of Chongqing
Medical University, Chongqing 401147, China;4. Dept. of Pharmacy, the First Affiliated Hospital of Chongqing
Medical University, Chongqing 400016, China)
ABSTRACT OBJECTIVE To systematically evaluate medication risk prediction models for hospitalized adult patients and
provide references for their development and clinical application. METHODS Databases including PubMed, Embase, Web of
Science, CNKI, Wanfang data, VIP and CBM were searched for studies on medication risk prediction models from their inception
to May 2024. After screening the literature, extracting data, and evaluating the quality of the literature, descriptive analysis was
performed on the results of the included studies. RESULTS A total of 13 studies were included, involving 12 models. Nine studies
used Logistic regression algorithm for modeling, and the number of included predictive factors ranged from 3 to 11; the area under
the receiver operating characteristic curve ranged from 0.65 to 0.865. The literature quality evaluation results showed that 10 studies
had high risk of bias; 10 studies had high applicability risk. A total of 31 predictive factors were extracted, including 15 items of
basic patient information, 3 test indicators, and 5 items of medication information, and 8 others. CONCLUSIONS The existing
medication risk prediction models for hospitalized adult inpatients are mainly Logistic regression algorithm, with predictive factors
mainly focusing on basic indicators such as demographics. The overall prediction performance of the models needs to be improved,
and the overall risk of bias is relatively high.
KEYWORDS hospitalized patients; medication risk; drug-
Δ 基金项目 重庆市中青年医学高端人才项目(No.YXGD202401);
related problems; prediction model; predictive factor
重庆市临床药学重点专科建设项目(No.渝卫办发〔2023〕69号);重庆
市璧山区人民医院科研创新团队建设项目(No.BYKY-CX2023002)
*第一作者 主管护师,硕士。研究方向:患者安全、流行病学。 药物治疗是疾病治疗中最重要且广泛的方式之一,
E-mail:382040924@qq.com
但随着治疗药物的广泛使用,药物相关问题(drug-
# 通信作者 副主任药师,硕士。研究方向:临床药学。E-mail:
wanghongmei225@126.com related problems,DRPs)和药物伤害时有发生。2019年,
· 1254 · China Pharmacy 2025 Vol. 36 No. 10 中国药房 2025年第36卷第10期