Page 91 - 《中国药房》2025年9期
P. 91

难治性化疗所致恶心呕吐的列线图预测模型建立与评估
                                                                                                Δ


                                                   1
                                                            1
                 1*
                                           3
                                   2
          孙 博 ,李淑芳 ,刘 勋 ,陈 露 ,张二锋 ,王会品(1.郑州市第三人民医院药学部,郑州 450099;2.郑州
                          1 #
          市第二人民医院药学部,郑州 450006;3.郑州市第三人民医院呼吸肿瘤内科,郑州 450099)
          中图分类号  R730.6;R975+.4      文献标志码  A      文章编号  1001-0408(2025)09-1105-06
          DOI  10.6039/j.issn.1001-0408.2025.09.15
          摘  要  目的 构建难治性化疗所致恶心呕吐(CINV)的列线图预测模型并进行评估。方法  收集2017年1月-2023年12月于郑
          州市第三人民医院化疗的恶性肿瘤患者资料,根据是否发生难治性CINV分为发生组和未发生组。采用多因素Logistic回归分析
          筛选难治性CINV的预测因素并构建列线图预测模型;采用受试者工作特征曲线评估模型的预测性能;采用Bootstrap法评价模型
          的校准度;采用决策曲线分析(DCA)评估模型在不同风险阈值下3种策略的临床净收益;采用临床影响曲线评价模型在不同风险
          阈值下的临床价值;采用Shapley加性解释(SHAP)法评估各因素对预测模型的贡献度。结果  共纳入388例患者,其中219例患者
          发生了难治性CINV。多因素Logistic回归分析结果显示,胃肠疾病史、预期性恶心呕吐、化疗致吐风险分级、电解质水平等11项
          因素是难治性CINV的预测因素。模型的曲线下面积为0.80[95%置信区间为(0.76,0.84)],平均误差为0.036。DCA结果表明,当
          风险阈值为0.05~0.85时,预测模型的临床净收益较高。SHAP分析结果显示,胃肠疾病史(0.924)、化疗致吐风险分级(0.866)和
          电解质水平(0.581)是排前3名的预测因素。结论  胃肠疾病史、预期性恶心呕吐、化疗致吐风险分级、电解质水平等11项因素是
          难治性CINV的预测因素。基于上述因素建立的模型预测能力较好,可用于预测难治性CINV的发生风险。
          关键词  化疗所致恶心呕吐;难治性;预测模型;列线图

          Development  and  evaluation  of  nomogram  prediction  model  for  refractory  chemotherapy-induced  nausea
          and vomiting
                 1
                                                                               1
                                                                1
          SUN Bo ,LI Shufang ,LIU Xun ,CHEN Lu ,ZHANG Erfeng ,WANG Huipin(1. Dept. of Pharmacy, the Third
                                      2
                            1
                                                3
          People’s  Hospital  of  Zhengzhou,  Zhengzhou  450099,  China;2.  Dept.  of  Pharmacy,  Zhengzhou  Second
          Hospital,  Zhengzhou  450006,  China;3.  Dept.  of  Respiratory  Oncology,  the  Third  People’s  Hospital  of
          Zhengzhou, Zhengzhou 450099, China)
          ABSTRACT     OBJECTIVE  To  construct  and  evaluate  nomogram  prediction  model  for  refractory  chemotherapy-induced  nausea
          and  vomiting (CINV).  METHODS  The  data  of  malignant  tumor  patients  who  received  chemotherapy  at  the  Third  People’s
          Hospital  of  Zhengzhou  from  January  2017  to  December  2023  were  collected.  These  patients  were  categorized  into  the  occurrence
          group  and  the  non-occurrence  group  according  to  the  occurrence  of  refractory  CINV.  Multivariate  Logistic  regression  analysis  was
          employed to  screen  predictive factors  for  refractory CINV  and  constructing a  nomogram prediction model.  Model  performance was
          assessed  via  receiver  operating  characteristic  curve  analysis.  Model  calibration  was  evaluated  using  Bootstrap  resampling.  Decision
          curve  analysis (DCA)  was  used  to  determine  the  clinical  net  benefit  of  three  strategies  under  different  risk  thresholds.  Clinical
          impact  curves  were  utilized  to  assess  the  clinical  value  of  the  model  at  different  risk  thresholds.  Shapley  additive  explanations
         (SHAP)  analysis  was  performed  to  evaluate  individual  factor  contributions  to  the  predictive  model.  RESULTS  A  total  of  388
          patients  were  included,  with  219  experiencing  refractory  CINV.  Multivariate  Logistic  regression  identified  11  predictive  factors  for
          refractory  CINV,  including  gastrointestinal  disease  history,  anticipated  nausea  and  vomiting,  chemotherapy-induced  emetic  risk
          classification, and electrolyte levels, etc. The model’s area under the curve was 0.80 [95% confidence interval (0.76, 0.84)], with
          a mean error of 0.036. DCA demonstrated the prediction model had higher clinical net benefit when the risk threshold was between
          0.05  and  0.85.  SHAP  analysis  revealed  the  top  three  predictive  factors  as  gastrointestinal  disease  history (0.924),  chemotherapy-
          induced  emetic  risk  classification  (0.866),  and  electrolyte  levels  (0.581).  CONCLUSIONS  Eleven  factors,  including
          gastrointestinal  disease  history,  anticipated  nausea  and  vomiting,  chemotherapy-induced  emetic  risk  classification,  and  electrolyte
          levels, are identified as predictors of refractory CINV. The model based on these factors has good predictive ability, which can be
          used to predict the risk of refractory CINV.
          KEYWORDS    chemotherapy-induced nausea and vomiting; refractory; prediction model; nomogram

             Δ 基金项目 河南省医学科技攻关计划项目(No.LHGJ20240913)
             *第一作者 主管药师,硕士。研究方向:临床药学。E-mail:                     化疗所致恶心呕吐(chemotherapy-induced nausea
          sss679031@163.com
                                                             and vomiting,CINV)是化疗过程中常见的不良反应之
             # 通信作者 副主任药师,硕士。研究方向:临床药学。E-mail:
                                                                                                    [1]
          fangfanglishu@126.com                              一,不仅会影响患者的生存质量和治疗依从性 ,还可能

          中国药房  2025年第36卷第9期                                                China Pharmacy  2025 Vol. 36  No. 9    · 1105 ·
   86   87   88   89   90   91   92   93   94   95   96