Page 27 - 《中国药房》2025年6期
P. 27
贯叶金丝桃质控方法提升及“辨色论质”研究
Δ
2, 3 #
2, 3
2, 3
2, 3
李喜硕 ,苏本正 ,曲珍妮 ,朱娟娟 ,戴衍朋 ,石典花 (1. 山东中医药大学药学院,济南 250355;
1 *
2, 3
2.山东省中医药研究院,济南 250014;3.国家中医药管理局中药蜜制和制炭炮制技术与原理重点研究室,
济南 250014)
中图分类号 R932;R917 文献标志码 A 文章编号 1001-0408(2025)06-0661-07
DOI 10.6039/j.issn.1001-0408.2025.06.04
摘 要 目的 为贯叶金丝桃的质量控制提供参考。方法 采用高效液相色谱法建立20批贯叶金丝桃的指纹图谱并测定其主要
成分绿原酸、芦丁、金丝桃苷、异槲皮苷、萹蓄苷、槲皮苷、槲皮素的含量;采用SPSS 26.0软件进行聚类分析。采用电子眼测定贯叶
金丝桃粉末的明度值(L*)、红绿值(a*)和黄蓝值(b*),采用机器学习算法建立基于外观色度值的贯叶金丝桃上述7种成分含量的
预测模型,并采用均方根误差(RMSE)评价预测模型的预测性能。结果 20批贯叶金丝桃指纹图谱共标定16个共有峰,指认出9
个色谱峰,分别为绿原酸、芦丁、金丝桃苷、异槲皮苷、萹蓄苷、槲皮苷、槲皮素、贯叶金丝桃素和金丝桃素,20批样品与对照图谱的
相似度为 0.889~0.987;绿原酸、芦丁、金丝桃苷、异槲皮苷、萹蓄苷、槲皮苷、槲皮素含量分别为 0.025%~0.166%、0.048%~
0.339%、0.082%~0.419%、0.017%~0.209%、0.011%~0.134%、0.020%~0.135%、0.041%~0.235%;聚类分析结果显示,当欧
氏距离为 1.4 时,18 批合格贯叶金丝桃可聚为 3 类。20 批贯叶金丝桃的 L*为 62.814~75.668,a*为 1.409~3.490,b*为 25.249~
30.759;XGBoost、LightGBM、AdaBoost 3种预测模型的RMSE为0.008~0.070,拟合效果良好。除芦丁外,XGBoost模型预测其余
6种成分的含量均具有较高的预测精度。结论 所建指纹图谱及含量测定方法准确、重复性好、结果可靠;结合机器学习算法构建
的基于外观色度值的含量预测模型可用于贯叶金丝桃的质量控制。
关键词 贯叶金丝桃;指纹图谱;聚类分析;含量测定;色度值;质量评价;机器学习;预测模型
Improvement of quality control methods and “quality evaluation via color discrimination” of Hypericum
perforatum
LI Xishuo ,SU Benzheng ,QU Zhenni ,ZHU Juanjuan ,DAI Yanpeng ,SHI Dianhua (1. College of
2, 3
2, 3
2, 3
2, 3
1
2, 3
Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;2. Shandong Academy
of Traditional Chinese Medicine, Jinan 250014, China;3. Key Laboratory for Research of Technique and
Principle of Honey-processing and Carbonizing of SATCM, Jinan 250014, China)
ABSTRACT OBJECTIVE To provide a reference for the quality control of Hypericum perforatum. METHODS High-
performance liquid chromatography (HPLC) was used to establish fingerprints for 20 batches of H. perforatum and determine the
contents of its main components: chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin and quercetin. Cluster
analysis was conducted using SPSS 26.0 software. The chromaticity values (luminance value L*, red-green value a*, and yellow-
blue value b*) of H. perforatum powder were measured using electronic eye. A prediction model for the contents of seven
components in H. perforatum based on its appearance chromaticity values was established using machine learning algorithms. The
predictive performance of the models was evaluated using root-mean-square-error (RMSE). RESULTS A total of 16 common peaks
were calibrated in the fingerprints of 20 batches of H. perforatum, and 9 peaks were identified, which were chlorogenic acid,
rutin, hyperin, isoquercitrin, avicularin, quercitrin, quercetin,
Δ 基金项目 国家中医药管理局中药炮制技术传承基地建设项目
hypericin and hyperforin; the similarities of the 20 batches of
(No.国中医药办规财函〔2022〕185号);国家中医药管理局科技司共建
samples and reference fingerprint ranged from 0.889-0.987. The
科技项目(No.GZY-KJS-SD-2023-53);国家中医药管理局高水平中医
药重点学科建设项目(No.ZYYZDXK-2023121);中央引导地方科技发 contents of chlorogenic acid, rutin, hyperin, isoquercitrin,
展专项资金项目(No.YDZX2021096) avicularin, quercitrin and quercetin were 0.025%-0.166%, 0.048%-
* 第一作者 硕 士 研 究 生 。 研 究 方 向 :中 药 炮 制 。 E-mail:
0.339%, 0.082%-0.419%, 0.017%-0.209%, 0.011%-0.134%,
1010946092@qq.com
0.020%-0.135%, 0.041%-0.235%, respectively. Cluster analysis
# 通信作者 研 究 员 ,博 士 。 研 究 方 向 :中 药 炮 制 。 E-mail:
shidianhua81@163.com results showed that 18 batches of qualified H. perforatum were
中国药房 2025年第36卷第6期 China Pharmacy 2025 Vol. 36 No. 6 · 661 ·