Page 116 - 《中国药房》2025年5期
P. 116

et al. Real-world burden of chemotherapy-induced myelo‐  [18]  ERNSTER V L. Nested case-control studies[J]. Prev Med,
               suppression in patients with small cell lung cancer:a retro‐  1994,23(5):587-590.
               spective analysis of electronic medical data from commu‐  [19]  CAO W,CHEN H D,YU Y W,et al. Changing profiles of
               nity cancer care providers[J]. J Med Econ,2022,25(1):  cancer burden worldwide and in China:a secondary analy‐
               108-118.                                            sis  of  the  global  cancer  statistics  2020[J].  Chin  Med  J
          [ 9 ]  MOONS K G M,DE GROOT J A H,BOUWMEESTER           (Engl),2021,134(7):783-791.
               W,et al. Critical appraisal and data extraction for syste-   [20]  NATTINO G,PENNELL M L,LEMESHOW S. Assessing
               matic  reviews  of  prediction  modelling  studies:the   the goodness of fit of logistic regression models in large
               CHARMS  checklist[J].  PLoS  Med,2014,11(10):       samples:a modification of the Hosmer-Lemeshow test[J].
               e1001744.                                           Biometrics,2020,76(2):549-560.
          [10]  WOLFF  R  F,MOONS  K  G  M,RILEY  R  D,et  al.   [21]  PARK  S  H,HAN  K.  Methodologic  guide  for  evaluating
               PROBAST:a tool to assess the risk of bias and applica-   clinical  performance  and  effect  of  artificial  intelligence
               bility  of  prediction  model  studies[J].  Ann  Intern  Med,  technology for medical diagnosis and prediction[J]. Radio-
               2019,170(1):51-58.                                  logy,2018,286(3):800-809.
          [11]  DRANITSARIS  G,RAYSON  D,VINCENT  M,et  al.   [22]  TALARI K,GOYAL M. Retrospective studies:utility and
               Identifying patients at high risk for neutropenic complica‐  caveats[J].  J  R  Coll  Physicians  Edinb,2020,50(4):
               tions  during  chemotherapy  for  metastatic  breast  cancer   398-402.
               with doxorubicin or pegylated liposomal doxorubicin:the   [23]  OGUNDIMU  E  O,ALTMAN  D  G,COLLINS  G  S.
               development of a prediction model[J]. Am J Clin Oncol,  Adequate sample size for developing prediction models is
               2008,31(4):369-374.                                 not simply related to events per variable[J]. J Clin Epide‐
          [12]  JENKINS  P,SCAIFE  J,FREEMAN  S.  Validation  of  a   miol,2016,76:175-182.
               predictive model that identifies patients at high risk of de‐  [24]  COLLINS  G  S,OGUNDIMU  E  O,COOK  J  A,et  al.
               veloping febrile neutropaenia following chemotherapy for   Quantifying the impact of different approaches for hand-
               breast cancer[J]. Ann Oncol,2012,23(7):1766-1771.   ling continuous predictors on the performance of a prog‐
          [13]  CHO B J,KIM K M,BILEGSAIKHAN S E,et al. Ma‐        nostic model[J]. Stat Med,2016,35(23):4124-4135.
               chine learning improves the prediction of febrile neutrope‐  [25]  PESKOE S B,ARTERBURN D,COLEMAN K J,et al.
               nia  in  Korean  inpatients  undergoing  chemotherapy  for   Adjusting  for  selection  bias  due  to  missing  data  in  elec‐
               breast cancer[J]. Sci Rep,2020,10(1):14803.         tronic health records-based research[J]. Stat Methods Med
          [14]  CHEN K,ZHANG X L,DENG H R,et al. Clinical predic‐  Res,2021,30(10):2221-2238.
               tive models for chemotherapy-induced febrile neutropenia   [26]  LEON  RAPOPORT  B,GARCIA-MORILLO  M,FONT
               in breast cancer patients:a validation study[J]. PLoS One,  C,et al. A prospective,real-world,multinational study of
               2014,9(6):e96413.                                   febrile neutropenia (FN) occurrence in oncology patients
          [15]  李亚玲,饶真真,胡保玲,等. 乳腺癌化疗患者骨髓抑制                         receiving  chemotherapy  with  intermediate  risk  of  FN:a
               风险预测模型的构建与验证[J]. 军事护理,2024,41(2):                   MASCC  Neutropenia,Infection,and  Myelosuppression
               6-10.                                               Study Group initiative[J]. Support Care Cancer,2023,31
               LI Y L,RAO Z Z,HU B L,et al. Construction and valida‐  (12):628.
               tion  of  a  risk  prediction  model  for  myelosuppression  in   [27]  DAI Y,LIU M B,LEI L,et al. Prognostic significance of
               breast  cancer  chemotherapy  patients[J].  Mil  Nurs,2024,  preoperative  prognostic  nutritional  index  in  ovarian  can‐
               41(2):6-10.                                         cer:a  systematic  review  and  meta-analysis[J].  Medicine
          [16]  黄家良,夏坤健,郭伟,等. 三阴性乳腺癌化疗致重度骨                        (Baltimore),2020,99(38):e21840.
               髓抑制的危险因素分析及其预测模型的构建[J]. 中山大                    [28]  CHEN L,BAI P,KONG X Y,et al. Prognostic nutritional
               学学报(医学科学版),2023,44(5):886-892.                      index (PNI)  in  patients  with  breast  cancer  treated  with
               HUANG J L,XIA K J,GUO W,et al. Risk factors and     neoadjuvant chemotherapy as a useful prognostic indicator
               predictive model for severe myelosuppression due to che‐  [J]. Front Cell Dev Biol,2021,9:656741.
               motherapy  in  triple-negative  breast  cancer[J].  J  Sun  Yat   [29]  ZHOU Y L,LIU Y D,ZHANG Y,et al. Identifying non-
               Sen Univ Med Sci,2023,44(5):886-892.                linear  association  between  maternal  free  thyroxine  and
          [17]  CHANG  L  L,SCHNEIDER  S  M,CHIANG  S  C,et  al.   risk of preterm delivery by a machine learning model[J].
               Implementing  an  evidence-based  risk  assessment  tool  to   Front Endocrinol (Lausanne),2022,13:817595.
               predict chemotherapy-induced neutropenia in women with       (收稿日期:2024-08-29  修回日期:2025-01-07)
               breast cancer[J]. Cancer Nurs,2013,36(3):198-205.                                  (编辑:刘明伟)




          · 618 ·    China Pharmacy  2025 Vol. 36  No. 5                               中国药房  2025年第36卷第5期
   111   112   113   114   115   116   117   118   119   120   121