Page 138 - 《中国药房》2023年1期
P. 138
2020,321:589-601. torial therapy of breast cancer[J]. J Nanobiotechnology,
[45] LIU P,PENG Y,ZHOU Y,et al. Rapamycin as a “one- 2021,19(1):134.
stone-three-birds” agent for cooperatively enhanced photo‐ [49] WANG X,LIU Y,HU Y,et al. Hybrid micelles loaded
therapies against metastatic breast cancer[J]. ACS Appl with chemotherapeutic drug-photothermal agent realizing
Mater Interfaces,2021,13(22):25674-25684. chemo-photothermal synergistic cancer therapy[J]. Eur J
Pharm Sci,2022,175:106231.
[46] ZHU Y X,JIA H R,DUAN Q Y,et al. Photosensitizer-
[50] TANG L,WANG Z,MU Q,et al. Targeting neutrophils
doped and plasma membrane-responsive liposomes for
for enhanced cancer theranostics[J]. Adv Mater,2020,32
nuclear drug delivery and multidrug resistance reversal[J].
(33):e2002739.
ACS Appl Mater Interfaces,2020,12(33):36882-36894.
[51] LI X,JEON Y H,KWON N,et al. In vivo-assembled
[47] HU S,DONG C,WANG J,et al. Assemblies of indocya‐
phthalocyanine/albumin supramolecular complexes com‐
nine green and chemotherapeutic drug to cure established bined with a hypoxia-activated prodrug for enhanced pho‐
tumors by synergistic chemo-photo therapy[J]. J Control todynamic immunotherapy of cancer[J]. Biomaterials,
Release,2020,324:250-259. 2021,266:120430.
[48] YI H,LU W,LIU F,et al. ROS-responsive liposomes (收稿日期:2022-08-02 修回日期:2022-11-29)
with NIR light-triggered doxorubicin release for combina‐ (编辑:唐晓莲)
(上接第121页)
[27] 徐楚鸿,艾又生,陈华庭.人工神经网络法预测肾移植术 cophenolic acid exposure prediction using machine lear-
后患者环孢素 A 的血药浓度[J]. 中国医院药学杂志, ning[J]. Clin Pharmacol Ther,2021,110(2):370-379.
2008,28(4):276-278. [35] HUANG X,YU Z,BU S,et al. An ensemble model for
[28] 张靖悦,冯植,张佳成,等 . 基于改进曲线回归模型的人 prediction of vancomycin trough concentrations in pedia-
全血中环孢素 A 谷浓度预测[J]. 中国医院药学杂志, tric patients[J]. Drug Des Devel Ther,2021,15:1549-1559.
2021,41(15):1491-1495,1506. [36] HUANG X,YU Z,WEI X,et al. Prediction of vancomy‐
[29] CAMPS-VALLS G,PORTA-OLTRA B,SORIA-OLIVAS cin dose on high-dimensional data using machine learning
E,et al. Prediction of cyclosporine dosage in patients after techniques[J]. Expert Rev Clin Pharmacol,2021,14(6):
kidney transplantation using neural networks[J]. IEEE 761-771.
Trans Biomed Eng,2003,50(4):442-448. [37] IMAI S,TAKEKUMA Y,MIYAI T,et al. A new algo‐
[30] HODA M R,GRIMM M,LAUFER G. Prediction of rithm optimized for initial dose settings of vancomycin
cyclosporine blood levels in heart transplantation patients using machine learning[J]. Biol Pharm Bull,2020,43(1):
using a pharmacokinetic model identified by evolutionary 188-193.
algorithms[J]. J Heart Lung Transplant,2005,24(11): [38] 唐颖莹,陆璐,周东 . 中国癫痫诊断治疗现状[J]. 癫痫杂
1855-1862. 志,2019(3):161-164.
[31] LECLERC V,BLEYZAC N,CERAULO A,et al. A deci‐ [39] HIEMKE C,BERGEMANN N,CLEMENT H W,et al.
sion support tool to find the best cyclosporine dose when Consensus guidelines for therapeutic drug monitoring in
switching from intravenous to oral route in pediatric stem neuropsychopharmacology:update 2017[J]. Pharmacopsy‐
cell transplant patients[J]. Eur J Clin Pharmacol,2020,76 chiatry,2018,51(1/2):e1.
(10):1409-1416. [40] 马攀,贾运涛,刘芳,等 . 基于支持向量机技术预测丙戊
[32] 任斌,何秋毅,许琼,等 . 人工神经网络预测肾移植受者 酸钠血药浓度[J].安徽医药,2021,25(1):35-39.
霉酚酸体内暴露药量[J].药学学报,2009,44(12):1397- [41] ZHU X,HUANG W,LU H,et al. A machine learning ap‐
1401. proach to personalized dose adjustment of lamotrigine
[33] 叶毅芳,容颖慈,李敏薇,等 . 肾移植患者霉酚酸血药浓 using noninvasive clinical parameters[J]. Sci Rep,2021,
度人工神经网络预测模型[J]. 中国药学杂志,2013,48 11(1):5568.
(14):1200-1203. (收稿日期:2022-07-27 修回日期:2022-11-18)
[34] WOILLARD J B,LABRIFFE M,DEBORD J,et al. My‐ (编辑:唐晓莲)
· 128 · China Pharmacy 2023 Vol. 34 No. 1 中国药房 2023年第34卷第1期