Page 137 - 《中国药房》2022年9期
P. 137
表面积,可实现核酸类药物的高效负载;其次,研究人员 complexes using prefunctionalized polymers for synchro-
可筛选性能不同的纳米材料,合成不同形状、大小、化学 nous delivery of doxorubicin and siRNA to cancer
组成、多孔结构的纳米颗粒,并对其进行表面修饰,可使 cells[J]. Biomaterials,2013,34(20):4849-4859.
纳米载体针对不同的荷载药物,表现出不同的药代动力 [ 8 ] KUMAR Y,KUCHE K,SWAMI R,et al. Exploring the
学性质和药效动力学性质。利用不同纳米材料构建的 potential of novel pH sensitive lipoplexes for tumor targe-
刺激响应型核酸类药物递送载体已经克服了非病毒载 ted gene delivery with reduced toxicity[J]. Int J Pharm,
2020,573:118889.
体核酸递送过程中的大部分障碍,但相较于临床应用的
[ 9 ] SCHAFER F Q,BUETTNER G R. Redox environment of
实际需求,许多非病毒核酸类药物递送载体在转染效
the cell as viewed through the redox state of the gluta-
率、生物安全性等方面仍有巨大的提升空间,载体的潜
thione disulfide/glutathione couple[J]. Free Radic Biol
在毒性和全身清除效率的研究还有待进一步展开。
Med,2001,30(11):1191-1212.
研究者若想要构建高效、低毒且精准靶向的智能响
[10] CHENG R,FENG F,MENG F H,et al. Glutathione-
应型核酸类药物纳米载体,需要考虑到核酸药物的化学
responsive nano-vehicles as a promising platform for
修饰、纳米材料的功能化、载体的制备技术以及给药途 targeted intracellular drug and gene delivery[J]. J Control
径的选择,同时需要结合具有可预测药代动力学和药效 Release,2011,152(1):2-12.
学特性的联合策略,以及明确的作用机制等。在许多情 [11] MOLLAZADEH S,MACKIEWICZ M,YAZDIMAMAGHANI
况下研究人员在构建载体时不可能对这些条件进行直 M. Recent advances in the redox-responsive drug delivery
接的排列组合比较,这些策略的正确性均会决定纳米载 nanoplatforms:a chemical structure and physical property
体是否能够构建成功。另外,目前蓬勃发展的人工智能 perspective[J]. Mater Sci Eng C Mater Biol Appl,2021,
和计算机建模的应用为解决这些问题也提供了一个新 118:111536.
方向。 [12] SON S,SINGHA K,KIM W J. Bioreducible BPEI-SS-
参考文献 PEG-cNGR polymer as a tumor targeted nonviral gene
[ 1 ] YIN H,KANASTY R L,ELTOUKHY A A,et al. Non-viral carrier[J]. Biomaterials,2010,31(24):6344-6354.
vectors for gene-based therapy[J]. Nat Rev Genet,2014, [13] MUTLU AGARDAN N B,SARISOZEN C,TORCHILIN
15(8):541-555. V P. Redox-triggered intracellular siRNA delivery[J].
[ 2 ] CHEN J,LIN L,GUO Z P,et al. Synergistic treatment of Chem Commun(Camb),2018,54(49):6368-6371.
cancer stem cells by combinations of antioncogenes and [14] SONG S J,LEE S,LEE Y,et al. Enzyme-responsive de-
doxorubicin[J].J Drug Deliv Sci Technol,2015,30:417- stabilization of stabilized plasmid-lipid nanoparticles as
423. an efficient gene delivery[J]. Eur J Pharm Sci,2016,91:
[ 3 ] FENTONO S,OLAFSONK N,PILLAIP S,et al. Advances 20-30.
in biomaterials for drug delivery[J/OL]. Adv Mater,2018 [15] TAKEMOTO H,MIYATA K,NISHIYAMA N,et al. Bio-
[2022-03-01]. https://pubmed.ncbi.nlm.nih.gov/29736981/. responsive polymer-based nucleic acid carriers[J]. Adv
DOI:10.1002/adma.201705328. Genet,2014,88:289-323.
[ 4 ] LI Y M,YANG J H,XU B,et al. Enhanced therapeutic [16] LI X,SUN A N,LIU Y J,et al. Amphiphilic dendrimer en-
siRNA to tumor cells by a pH-sensitive agmatine-chitosan gineered nanocarrier systems for co-delivery of siRNA
bioconjugate[J]. ACS Appl Mater Interfaces,2015,7(15): and paclitaxel to matrix metalloproteinase-rich tumors for
8114-8124. synergistic therapy[J/OL]. NPG Asia Mater,2018[2022-
[ 5 ] LIBERTI M V,LOCASALE J W. The Warburg effect: 03-01]. http://www.nature.com/articles/s41427-018-0027-4.
how does it benefit cancer cells? [J]. Trends Biochem Sci, DOI:10.1038/s41427-018-0027-4.
2016,41(3):211-218. [17] ZHANG W M,ZHANG J,QIAO Z,et al. Functionally
[ 6 ] WORSLEY C M,VEALE R B,MAYNEE S. The acidic oriented tumor microenvironment responsive polymeric
tumour microenvironment:manipulating the immune re- nanoassembly:engineering and applications[J]. Chin J
sponse to elicit escape[J/OL]. Hum Immunol,2022[2022- Polym Sci,2018,36(3):273-287.
03-01].https://pubmed.ncbi.nlm.nih.gov/35216847/. DOI: [18] KIM J,LEE Y M,KIM H,et al. Phenylboronic acid-sugar
10.1016/j.humimm.2022.01.014. grafted polymer architecture as a dual stimuli-responsive
[ 7 ] DONG D W,XIANG B,GAO W,et al. pH-responsive gene carrier for targeted anti-angiogenic tumor therapy[J].
中国药房 2022年第33卷第9期 China Pharmacy 2022 Vol. 33 No. 9 ·1151 ·