Page 138 - 《中国药房》2025年1期
P. 138

[22]  ZHANG H Y,BU F J,LI L,et al. Prediction of drug-drug   neic  hematopoietic  stem  cell  transplantation  in  children
               interaction  between  tacrolimus  and  principal  ingredients   with β-thalassemia major[J]. Pharmgenomics Pers Med,
               of  Wuzhi  capsule  in  Chinese  healthy  volunteers  using   2021,14:1221-1237.
               physiologically-based  pharmacokinetic  modelling[J].  Ba‐  [33]  BARTELINK I H,RADEMAKER C M,SCHOBBEN A F,
               sic Clin Pharmacol Toxicol,2018,122(3):331-340.     et al. Guidelines on paediatric dosing on the basis of deve-
          [23]  GREENER J G,KANDATHIL S M,MOFFAT L,et al. A        lopmental physiology and pharmacokinetic considerations
               guide to machine learning for biologists[J]. Nat Rev Mol   [J]. Clin Pharmacokinet,2006,45(11):1077-1097.
               Cell Biol,2022,23(1):40-55.                    [34]  焦正,李新刚,尚德为,等. 模型引导的精准用药:中国专
          [24]  LEE S,SONG M,HAN J,et al. Application of machine   家共识:2021 版[J]. 中国临床药理学与治疗学,2021,26
               learning classification to improve the performance of van‐  (11):1215-1228.
               comycin  therapeutic  drug  monitoring[J].  Pharmaceutics,  JIAO Z,LI X G,SHANG D W,et al. Model informed pre‐
               2022,14(5):1023.                                    cision dosing:China expert consensus report:2021 edition
          [25]  FU Q,JING Y,LIU MR G,et al. Machine learning-based   [J].  Chin  J  Clin  Pharmacol  Ther,2021,26(11):1215-
               method for tacrolimus dose predictions in Chinese kidney   1228.
               transplant  perioperative  patients[J].  J  Clin  Pharm  Ther,  [35]  DEL  VALLE-MORENO  P,SUAREZ-CASILLAS  P,
               2022,47(5):600-608.                                 MEJÍAS-TRUEBA  M,et  al.  Model-informed  precision
          [26]  WOILLARD J B,LABRIFFE M,DEBORD J,et al. Ta‐        dosing  software  tools  for  dosage  regimen  individualiza‐
               crolimus  exposure  prediction  using  machine  learning[J].   tion:a  scoping  review[J].  Pharmaceutics,2023,15(7):
               Clin Pharmacol Ther,2021,110(2):361-369.            1859.
          [27]  SONG X W,LIU F H,GAO H E,et al. Compare the per‐  [36]  KANTASIRIPITAK  W,VAN  DAELE  R,GIJSEN  M,
               formance of multiple machine learning models in predic-   et al. Software tools for model-informed precision dosing:
               ting  tacrolimus  concentration  for  infant  patients  with       how well do they satisfy the needs?[J]. Front Pharmacol,
               living  donor  liver  transplantation[J].  Pediatr  Transplant,  2020,11:620.
               2023,27(1):e14379.                             [37]  TAYLOR Z L,POWELEIT E A,PAICE K,et al. Tutorial
          [28]  LIN Z M,CHOU W C. Machine learning and artificial in‐  on  model  selection  and  validation  of  model  input  into
               telligence in toxicological sciences[J]. Toxicol Sci,2022,  precision  dosing  software  for  model-informed  precision
               189(1):7-19.                                        dosing[J].  CPT  Pharmacometrics  Syst  Pharmacol,2023,
          [29]  KRZYWINSKI  M,ALTMAN  N.  Multiple  linear  regres‐  12(12):1827-1845.
               sion[J]. Nat Methods,2015,12(12):1103-1104.    [38]  EL-KHATEEB  E,BURKHILL  S,MURBY  S,et  al.
          [30]  KANAMITSU K,YORIFUJI T,ISHIDA H,et al. Clinical    Physiological-based  pharmacokinetic  modeling  trends  in
               factors  affecting  the  dose  conversion  ratio  from  intrave‐  pharmaceutical drug development over the last 20-years;
               nous to oral tacrolimus formulation among pediatric hema‐  in-depth analysis of applications,organizations,and plat‐
               topoietic stem cell transplantation recipients[J]. Ther Drug   forms[J]. Biopharm Drug Dispos,2021,42(4):107-117.
               Monit,2020,42(6):803-810.                      [39]  CHOU  W  C,LIN  Z  M.  Machine  learning  and  artificial
          [31]  陈铭,许静,陈峰,等. 基因多态性对难治性肾病综合征                         intelligence  in  physiologically  based  pharmacokinetic
               患儿他克莫司血药浓度及其肾毒性的影响[J]. 安徽医                          modeling[J]. Toxicol Sci,2023,191(1):1-14.
               学,2023,44(1):82-87.                            [40]  LI Z R,LI R D,NIU W J,et al. Population pharmacoki‐
               CHEN M,XU J,CHEN F,et al. Effect of gene polymor‐   netic modeling combined with machine learning approach
               phism on blood concentration and nephrotoxicity of tacro‐  improved  tacrolimus  trough  concentration  prediction  in
               limus  in  children  with  refractory  nephrotic  syndrome[J].   Chinese adult liver transplant recipients[J]. J Clin Pharma‐
               Anhui Med J,2023,44(1):82-87.                       col,2023,63(3):314-325.
          [32]  LI C X,LU J J,ZHOU S R,et al. Influential factors and       (收稿日期:2024-04-27  修回日期:2024-12-17)
               efficacy analysis of tacrolimus concentration after alloge‐                        (编辑:胡晓霖)














          · 128 ·    China Pharmacy  2025 Vol. 36  No. 1                               中国药房  2025年第36卷第1期
   133   134   135   136   137   138   139   140   141   142   143