Page 137 - 《中国药房》2022年13期
P. 137
(HECS-ss-OA)/GA。进一步研究表明,相较于未涂布 bility and antitumor effects by nanosized gambogic acid-
HA 的(HECS-ss-OA)/GA,HA(HECS-ss-OA)/GA 表现 mPEG2000 micelles[J]. Int J Nanomedicine,2014,9:
出更高的细胞毒性。 243-255.
3 结论 [ 9 ] SCHNOOR R,MAAS S L N,BROEKMAN M L D. Hepa-
rin in malignant glioma:review of preclinical studies and
溶解性差、副作用多是小分子抗肿瘤药物的主要缺
clinical results[J]. J Neurooncol,2015,124(2):151-156.
点,高效低毒的载体可以改善这类药物的缺点,并提高
[10] YAN X F,YANG Y,HE L Q,et al. Gambogic acid grafted
其生物利用度。目前已有的载体包括各种新型纳米粒
low molecular weight heparin micelles for targeted treat-
和脂质体,对其表面进行修饰,能够提高药物的生物靶
ment in a hepatocellular carcinoma model with an en-
向性、载药量、渗透性。GA对多种肿瘤细胞的生长均有
hanced anti-angiogenesis effect[J]. Int J Pharm,2017,522
抑制作用,但其溶解度低、半衰期短,从而降低了其临床
(1/2):110-118.
应用价值。通过对药物载体的设计可以解决GA存在的 [11] WANG W W,LI X Y,WANG Z H,et al. A novel“mosaic-
一系列缺点。在药物载体表面修饰肿瘤穿透肽,可增加 type”nanoparticle for selective drug release targeting
GA 对肿瘤细胞的靶向性和渗透性;在药物载体中引入 hypoxic cancer cells[J]. Nanoscale,2019,11(5):2211-
多环境敏感型响应基团,可将GA靶向缓释至肿瘤部位; 2222.
在药物载体表面修饰红细胞膜,可避免网状内皮系统对 [12] ZHU A P,YUAN L H,JIN W J,et al. Polysaccharide sur-
GA的识别和吞噬,并提高其生物兼容性。总之,药物载 face modified Fe 3O 4 nanoparticles for camptothecin loading
体的设计,较大程度地改善了GA 的自身缺陷;GA 药物 and release[J]. Acta Biomater,2009,5(5):1489-1498.
载体中引入更多的响应基团可能会使其达到更好的抗 [13] ZHANG W,QIAO L X,WANG X C,et al. Inducing cell
肿瘤效果。 cycle arrest and apoptosis by dimercaptosuccinic acid
参考文献 modified Fe3O4 magnetic nanoparticles combined with
[ 1 ] KASHYAP D,MONDAL R,TULI H S,et al. Molecular nontoxic concentration of bortezomib and gambogic acid
targets of gambogic acid in cancer:recent trends and ad- in RPMI-8226 cells[J]. Int J Nanomedicine,2015,10:
vancements[J]. Tumour Biol,2016,37(10):12915-12925. 3275-3289.
[ 2 ] HATAMI E,NAGESH P K B,JAGGI M,et al. Gambogic [14] WANG C L,ZHANG H J,CHEN Y,et al. Gambogic acid-
acid potentiates gemcitabine induced anticancer activity in loaded magnetic Fe3O4 nanoparticles inhibit Panc-1 pan-
non-small cell lung cancer[J]. Eur J Pharmacol,2020, creatic cancer cell proliferation and migration by inactivating
888:173486. transcription factor ETS1[J]. Int J Nanomedicine,2012,7:
[ 3 ] LEE P N H,HO W S. Antiproliferative activity of gambogic 781-787.
acid isolated from Garcinia hanburyi in Hep3B and Huh7 [15] DU Q,LV F N,HUANG J,et al. A multiple environ-
cancer cells[J]. Oncol Rep,2013,29(5):1744-1750. ment-sensitive prodrug nanomicelle strategy based on chi-
[ 4 ] LIANG L L,ZHANG Z X,QIN X W,et al. Gambogic acid tosan graftomer for enhanced tumor therapy of gambogic
inhibits melanoma through regulation of miR-199a-3p/ acid[J]. Carbohydr Polym,2021,267:118229.
ZEB1 signalling[J]. Basic Clin Pharmacol Toxicol,2018, [16] ATTAMA A A. SLN,NLC,LDC:state of the art in drug
123(6):692-703. and active delivery[J]. Recent Pat Drug Deliv Formul,
[ 5 ] PAN H,LU L Y,WANG X Q,et al. Gambogic acid induces 2011,5(3):178-187.
cell apoptosis and inhibits MAPK pathway in PTEN-/-/ [17] WANG R F,SHEN Q,LI X,et al. Efficacy of inverso iso-
p53-/- prostate cancer cells in vitro and ex vivo[J]. Chin J mer of CendR peptide on tumor tissue penetration[J]. Acta
Integr Med,2018,24(2):109-116. Pharm Sin B,2018,8(5):825-832.
[ 6 ] MURPHY C J,TANG H D,VAN KIRK E A,et al. Repro- [18] LIU Z D,ZHAO H N,SHU L X,et al. Preparation and
ductive effects of a pegylated curcumin[J]. Reprod Toxicol, evaluation of Baicalin-loaded cationic solid lipid nanopar-
2012,34(1):120-124. ticles conjugated with OX26 for improved delivery across
[ 7 ] YU F,TANG X H. Novel long-circulating liposomes con- the BBB[J]. Drug Dev Ind Pharm,2015,41(3):353-361.
sisting of PEG modified β-sitosterol for gambogic acid de- [19] HUANG R,LI J W,KEBEBE D,et al. Cell penetrating
livery[J]. J Nanosci Nanotechnol,2016,16(3):3115- peptides functionalized gambogic acid-nanostructured lipid
3121. carrier for cancer treatment[J]. Drug Deliv,2018,25(1):
[ 8 ] CAI L,QIU N,XIANG M,et al. Improving aqueous solu- 757-765.
中国药房 2022年第33卷第13期 China Pharmacy 2022 Vol. 33 No. 13 ·1663 ·