Page 7 - 《中国药房》2025年13期
P. 7

·指南与共识·


          人工智能辅助药学服务专家共识
                                                            Δ

          国家卫生健康委医院管理研究所药学信息专家委员会,中国医药教育协会老年药学专业委员会,北京整合医学
          学会数智化药学管理与服务分会


          中图分类号  R95;TP18      文献标志码  A      文章编号  1001-0408(2025)13-1553-10
          DOI  10.6039/j.issn.1001-0408.2025.13.01

          摘  要  目的  为人工智能技术在辅助药学服务工作中的科学、规范应用提供指导性意见,推动药学服务高质量发展。方法  以
         “人工智能”“药学服务”等关键词全面检索国内外数据库和相关政策性文献,结合我国人工智能辅助药学服务工作实践经验起草
          共识框架和初步推荐意见,以专家组70%及以上成员同意视为共识达成标准。结果与结论  经过2轮改良德尔菲法调查与多轮讨
          论,围绕人工智能辅助开展药学服务的定义、内容、目标、多项应用场景(药学门诊、药物重整、用药教育、药物不良事件预测和监
          测、居家药学服务、药品供应)、伦理与责任主体、面临的挑战与质量控制建议方面形成了23条推荐意见(同意率均大于90%,均为
          强推荐),供医疗机构从事药学服务工作的专业技术人员、管理人员和人工智能技术开发人员使用,为人工智能时代背景下的药学
          服务实践提供指导。
          关键词  人工智能;药学服务;专家共识;医院药学

          Expert consensus on artificial intelligence-assisted pharmaceutical care
          Pharmacy  Information  Expert  Committee  of  the  National  Institute  of  Hospital Administration  under  the  National
          Health  Commission,  Geriatric  Pharmacy  Professional  Committee  of  the  China  Medicine  Education Association,
          Sub-association  of  Digital  and  Intelligent  Pharmacy  Management  and  Services  of  the  Beijing  Integrative
          Medicine Society


          ABSTRACT   OBJECTIVE  To  provide  guidance  for  the  scientific  and  standardized  application  of  artificial  intelligence (AI)
          technology  in  supporting  pharmaceutical  care  services,  and  to  promote  the  high-quality  development  of  pharmaceutical  care.
          METHODS  Using  keywords  such  as “artificial  intelligence”  and “pharmaceutical  care”,  a  comprehensive  search  was  conducted
          across  domestic  and  international  databases  and  relevant  policy  documents.  Drawing  upon  practical  experience  in  AI-assisted
          pharmaceutical  care  services  in  China,  a  consensus  framework  and  preliminary  recommendations  were  drafted.  Consensus  was
          defined as agreement by 70% or more of expert panel members. RESULTS & CONCLUSIONS Through two rounds of the Delphi
          method and multiple rounds of discussions, 23 strong recommendations (approval rate >90%) were formulated. These address the
          definition,  scope,  objectives,  multiple  application  scenarios (including  pharmaceutical  outpatient,  medication  reconciliation,
          medication education, adverse drug event prediction and monitoring, home-based pharmaceutical care services, and drug supply),
          ethical  considerations  and  accountability,  challenges  encountered,  and  quality  control  recommendations  for  AI-assisted
          pharmaceutical care. Intended for use by professional technical staff engaged in pharmaceutical care, managers, and AI technology
          developers within healthcare institutions, these recommendations provide guidance for the practice of pharmaceutical care in the era
          of AI.
          KEYWORDS    artificial intelligence; pharmaceutical care; expert consensus; hospital pharmacy


              随着我国医疗需求的快速增长与人口老龄化不断                          资源短缺,药师数量与庞大患者群体的药学服务需求不
          加剧,患者的用药复杂性与风险显著上升,对药学服务                           匹配,基层医疗机构尤为突出;另一方面,药学服务责任
          的专业性、精准性和时效性提出了更高要求。然而,当                           重大,传统人工服务模式受限于工作效率、知识更新速
          前我国药学服务领域面临严峻挑战:一方面,优秀药师                           度及个人经验差异,难以完全满足患者个性化、全周期
                                                             的用药管理需求。人工智能(artificial intelligence,AI)
             Δ 基金项目 国家重点研发计划项目(No.2024YFF1207000)
                                                             技术在数据处理、知识挖掘、风险预测等方面具有显著
             # 通信作者 王天琳,副主任药师,硕士生导师,博士。研究方向:
          医院药学、临床药学。E-mail:wangtl_301@126.com                优势,可以匹配不同的药学服务应用场景,辅助药师提


          中国药房  2025年第36卷第13期                                              China Pharmacy  2025 Vol. 36  No. 13    · 1553 ·
   2   3   4   5   6   7   8   9   10   11   12